

DM3-EC882AC 总线型数字步进驱动器

用户手册 (版本号: V1.3)

EtherCAT ® 是注册商标和专利技术, 由德国倍福自动化有限公司授权。

- ◆非常感谢您本次购买雷赛产品
- ◆使用前请详细阅读此说明书,正确使用该产品
- ◆请妥善保管此说明书

前 言

首先感谢您购买使用雷赛公司带 EtherCAT 总线的 DM3-EC 系列开环步进驱动器。

DM3-EC系列是雷赛在高性能数字型开环步进驱动器基础上增加了总线通讯功能。总线 通讯采用 EtherCAT 总线通讯接口,基于 EtherCAT 从站技术,实现步进系统的实时控制与实 时数据传输,使得现场总线达到 100Mb/s 的传输速率。具有使用简单、稳定可靠、性能卓越 等特点。支持包括雷赛、倍福、欧姆龙、翠欧等在内的多家主站控制系统,在光伏、纺织、 民用、机器人、锂电设备、3C 电子等行业得到普遍应用。

本手册仅介绍 EtherCAT 总线型开环步进驱动器的规格与应用。若对 EtherCAT 总线使用 有所疑惑,请咨询我公司的技术人员以获得帮助。

感谢您选用深圳市雷赛智能控制股份有限公司的 DM3-EC 系列步进电机驱动产品,本手册提供了使用该产品的所需知识及注意事项。

操作不当可能引起意外事故,在使用本产品之前,请务必仔细阅读本说明书

由于产品的改进,手册内容可能变更,恕不另行通知。 用户对产品的任何改动我厂将不承担任何责任,产品的保修单将因此作废。

阅读本手册时,请特别注意以下提示:

1

目 录

前 言.		1
目录.		2
第一章	概述	3
1.1	产品简介	3
1.2	到货检查	5
1.3	产品规格和外观	6
第二章	安装	7
2.1	储存和安装环境	7
2.2	驱动器的安装	7
	2.2.1 驱动器尺寸	7
	2.2.2 安装方法	8
第三章	接口规格	9
3.1	总线开环步进配线图	10
3.2	端子及旋钮说明	11
	3.2.1 端子定义	11
	3.2.2 电源端子	11
	3.2.3 电机绕组端子	11
	3.2.4 控制信号端子	12
	3.2.5 EtherCAT 总线接口端子	14
	3.2.6 EtherCAT 站点地址	16
第四章	参数说明与设置	17
4.1	参数一览表	17
	4.1.1 通讯参数	17
	4.1.2 厂家参数列表	17
	4.1.3 运动参数列表	21
4.2	I/O 功能配置	23
	4.2.1 输入信号	23
	4.2.2 输出信号	23
4.3	串口调试软件	25
	1) 软件安装	25
	2) 软件使用	26
4.4	XML 设备描述文件	28
第五章	显示及故障处理	29
5.1	驱动器显示	29
	5.1.1 初始化阶段	29
	5.1.2 正常运行阶段	29
5.2	故障显示	30
5.3	故障处理	32
5.4	EtherCAT 通讯报警	33
第六章	常用功能	34
6.1	参数保存和恢复出厂值	34
6.2	控制字和运行模式	34
6.3	探针捕获功能	37
附录 1	原点方法	39
附录 2	对象字典总表	45
附录 3	常见故障处理	51

第一章 概述

1.1 产品简介

DM3-EC系列步进驱动是深圳市雷赛智能控制股份有限公司自主研制的全数字总线式步进驱动系列产品,基于 ETG COE + CANopen DSP402 协议,可与支持此标准协议的控制器/驱动器无缝连接。

与脉冲型步进相比,DM3-EC系列步进产品具有以下优点:

◆降低通讯干扰,延长通讯距离

脉冲通讯方式下由于脉冲信号的传输线缆极易受到电磁干扰而降低通讯的可靠性。而 EtherCAT 总线 通讯由于协议内含错误检测、限制及处理机制可以明显提高通讯的可靠性,减少干扰所对指令造成的影响 并延长通讯距离。

◆提高运动性能

总线通讯型步进非周期性同步模式下的轨迹规划是在驱动器里实现,控制器只需要将目标位置、速度、 加速度等信息传递给驱动器即可。所以驱动器可以在内部提前预知下一时刻的运动参数,进而采取前馈措 施来提高运动性能。

◆降低系统接线复杂度

脉冲通讯方式下控制器需要与每台驱动器通过脉冲线缆连接通讯,常造成机器设备线缆密集且连线复杂。EtherCAT 总线通讯方式下,控制器只需要与其中一台驱动器使用线缆连接,其余驱动器只要使 用链型方式与该驱动器连接即可。

◆减少对控制单元端口数量的要求,进而降低成本

多台总线式开环步进驱动器只需要一个端口与运动控制单元(运动控制器或运动控制卡)相连,无需脉冲模块,也无需因为驱动器的数量多而增加控制卡数量,进而无需考虑电脑插槽数量的限制。可以节约脉冲模块、控制卡及工控机的成本。

3

1.2 到货检查

- 1. 收货后,必须进行以下检查:
- (1) 包装箱是否完好,货物是否因运输受损?
- (2)核对开环步进驱动器铭牌,收到的货物是否确是所订货物?
- (3) 核对装箱单, 附件是否齐全?

- 附件清单
 DM3-EC系列开环步进驱动器标准附件包括:
 (1)电源 2PIN 插拔式端子1个
- (2) 电机绕组 4PIN 插拔式端子 1 个
- (3) 控制信号 22PIN 按压式端子 1个
- 3. 型号意义

DM3-EC 系列开环步进驱动器型号意义,以 DM3-EC882AC 为例说明。

图 1-3 DM3-EC 系列的命名规则

表 1.1 DM3-EC 系列开环步进驱动器型号含义

序号		含义
1	系列名称	DM3: 雷赛第三代开环步进驱动器
2	系列名称	EC: 通讯协议为 EtherCAT
3	最大电压	8:表示最高输入电压为 80V
4	最大电流	82: 表示最大输出峰值电流为 8.2A
5	订制型号	特殊用途,AC 表示交流

1.3 产品规格和外观

参数	DM3-EC882AC				
输出电流 (峰值)	1.0~8.2A				
匹配电机		86 机座			
电源电压		20~80Vac			
尺寸 (H*W*L mm)		151*113*40			
重量 (kg)		0.57			
输入信号	原点输入、	正向限位、负向限位、急停、探针、自定义输入			
输出信号	抱闸输出、报警输出、到位输出、自定义输出				
报警功能	过流、过压、缺相、通讯异常等				
调试软件		Standard Protuner/LMS			
通讯接口	Micro USB				
	场合	不能放在其它发热的设备旁,要避免粉尘、油雾、腐蚀 性气体,湿度太大及强振动场所,禁止有可燃气体和导 电灰尘;			
体田石拉	使用温度 0~50℃				
 () () () () () () () () () (保存温度 -20℃~65℃				
	湿度 40~90%RH				
	振动	10~55Hz/0.15mm			
	安装	垂直安装或者水平安装			

表 1.2 DM3-EC882AC 驱动器规格一览表

第二章 安装

2.1 储存和安装环境

表 2.1 DM3-EC 系列驱动器存储及安装环境

保存温度		-20°C ~ 65°C
防护等级		IP20
		不能放在其它发热的设备旁,要避免粉尘、油雾、腐蚀性气体,湿度太
	「切口」	大及强振动场所,禁止有可燃气体和导电灰尘;
使用环境	温度	0~50°C
	湿度	40~90%RH
	振动	10~55Hz/0.15mm

2.2 驱动器的安装

▶ 步进驱动器必须安装在保护良好的电柜内。 ● 步进驱动器必须按规定的方向和间隔安装,并保证良好的散热条件。 ● 不可安装在易燃物体上面或附近,防止火灾。

2.2.1 驱动器尺寸

图 2-1 驱动器机械尺寸

7

2.2.2 安装方法

用户可以采取底板安装或者面板安装方式安装,安装方向垂直于安转面,为了保证良好的散热条件, 实际安转中必须尽可能预留较大安装间隔,保持柜内通风散热。

图 2-3 驱动器安装方式示意图

第三章 接口规格

3.1 总线开环步进配线图

图 3-1 总线开环步进配线图

- 注:1)、EtherCAT 通讯端子的接线,输入接 IN 口,输出下一台接 OUT 口。
 - 2)、单端输入 I3-I7 为双向输入,可作共阳接法,也可作共阴接法。
 - 3)、单端输出 O3~O6 为双向输出,可作共阳接法,也可作共阴接法。
 - 4)、抱闸端口输出可直接接抱闸器的线圈。

3.2 端子及旋钮说明

3.2.1 端子定义

端子号	描述
CN1	电源端子
CN2	电机动力线端子
CN4	控制信号端子
CN5	EtherCAT 总线接口端子
CN6	Micro USB 调试端口
MSD	旋码开关,节点设置地址高位
LSD	旋码开关,节点设置地址低位
两位7段数码管	显示报警内容和地址,具体显示内容和报警代码请查看 5.1

3.2.2 电源端子

端子号	图示	信号	名称
CN1		AC	电源输入
CNI		AC	电源输入

注: 线径≥0.3mm2 (AWG15-22)。建议电源经过噪声滤波器供电,提供抗干扰性。

3.2.3 电机绕组端子

端子号	图示	信号	名称
		A+	电机线组 A 相正端
CNI2		B+	电机线组 B 相正端
CINZ		А-	电机线组 A 相负端
		В-	电机线组 B 相负端

3.2.4 控制信号端子

端子号	图示	管脚号	信号	输入/输出	名称
		1	I1+	输入	差分输入信号 I1,12~24V 有效,最大输
		2	I1-	输入	入频率 500KHz , 信号定义可配置 , 默认为 探针信号 1
		3	I2+	输入	差分输入信号 I2,12~24V 有效,最大输
		4	I2-	输入	入频率 500KHz , 信号定义可配置 , 默认为 探针信号 2
		5	I3	输入	单端输入信号 I3~I7,12~24V 有效,最大
		6	I6	输入	输入频率 10KHz , 信号功能定义可配置。 既可作共阴输入 , 又可作共阳输入 ;
		7	I4	输入	默认 I3 为正限位 ;
		8	17	输入	默认 I4 为负限位 ; 默认 I5 为自定义输入 ;
		9	I5	输入	默认 I6 为原点输入;
		10	COMI	输入	默认 I7 为快速停止 ;
		11	01+	榆屮	差分输出信号 O1,输出最大电流 100mA,
		12	01-		取大剛压 30Vac。制出功能可能直, 默认报警输出
		13	O2+	t <u>A</u> UI	差分输出信号 O2 ,输出最大电流 100mA ,
		14	O2-		最大耐压 30Vdc。输出功能可配置, 默认抱间输出
CN4		15	O3	输出	单端输出信号 OUT3~OUT6, 支持双向输
		16	O6	输出	出,既可作共阴接法,也可作共阳接法; 最大耐压 30Vdc。输出功能可配置;
		17	O4	输出	O3 默认为到位输出;
		19	O5	输出	O4 默认为 Ready 输出 ; O5 默认为自定义输出 ;
		21	СОМ	输出	06 默认为自定义输出;
		18	24VB		抱闸专用输出,输出最大电流 500mA,可
		20	BR+	输出	且接继动抱ا思器。
		22	BR-		

注:线径≥0.12mm2 (AWG24-26)。建议采用双绞屏蔽电缆,电缆长度尽可能短,建议不超过3米。尽量远离动力线布线,防止干扰串入。请给相关线路中的感性原件(如线圈)安装浪涌吸收元件;直流线圈反向并联续流二极管,交流线圈并联阻容吸收回路。

I3-I6 为双向单端,最大输出驱动电流为 10mA,如果要用于驱动外部中间继电器或传感器等,需特别注意。

输出信号接线如下图所示:

- 1) 输出为集电极开路形式,最大电流 10mA,外部电源最大电压 30VDC。因此,开关量输出信号的负载 必须满足这个限定要求。如果超过限定要求或输出直接与电源连接,会使开环步进驱动器损坏。
- 2) 此款驱动器有专用的抱闸输出口,集成续流二极管,驱动电流高达 500mA,可以不用继电器直接驱动 抱闸器;

图 3-3 专用抱闸输出接口

3.2.5 EtherCAT 总线接口端子

端子号	图示		管脚号	信号	名称	
			1,9	E_TX+	EtherCAT 数据发送正端	
		1	2,10	E_TX-	EtherCAT 数据发送负端	
			3,11	E_RX+	EtherCAT 数据接收正端	
		8	4,12	/	/	
CN5			5,13	/	/	
		9 16	6,14	E_RX-	EtherCAT 数据接收负端	
			7,15	/	/	
			8,16	/	/	
			连接器外壳	PE	屏蔽接地	
	① LED1 为"Link/Activity IN"状态灯,绿色					
备注	(2) LED3 为"Link/Activity OUT"状态灯,绿色					
	(④ LED4 为"ERR"状态灯,	^{城已} 红色				

注: EtherCAT 总线节点间的线缆长度建议不超过 100 米。 推荐使用带双层屏蔽的超五类百兆以太网线缆或者更好线缆。

表 3-1 RJ45 网口灯定义说明

名称	颜色	状态	描述
		关	初始化状态
DIM	纪色	闪烁	预操作状态
KUN	绿色	单闪	安全操作状态
		开	操作状态
		关	无错误
		慢闪烁	通信设置错误
EDD	47 年	单闪	同步错误或通信数据错误
EKK	红色	双闪	请求看门狗超时
		快闪烁	引导错误
		开	内部总线看门狗超时
		关	物理层链路无建立
L/A IN	绿色	开	物理层链路建立
		闪烁	链路建立后交互数据
		关	物理层链路无建立
L/A OUT	绿色	开	物理层链路建立
		闪烁	链路建立后交互数据

EtherCAT 物理层及线缆连接要求

电气参数	电气参数 Type A 线缆(固定) Type B 经				
标称/特征阻抗(公差)	100Ω (15Ω) (IEC61156-5)			
Balanced or Unbalanced	Balanced				
环路电阻	$\leq 115 \Omega /\mathrm{Km}$				
绝缘电阻	\geq 500M Ω /Km				
传输阻抗	$\leq 50 \mathrm{m} \Omega / \mathrm{m} (10 \mathrm{MHZ})$				
最大时延	≦550ns/100m				
时延偏差	≦20ns/100m				
屏蔽 S/FTQ(外层绞合屏蔽/内层)		屏蔽/内层)			

固定场合

活动场合

物理参数	Type A 线缆(固定)	Type B 线缆(活动)
导线颜色	白(3);黄(1);蓝(2);橙(6)	
单根线缆直径	6.5mm (+/-0.2mm)	
导线截面积	AWG 22/1(单根实心)	AWG 22/7 (7x0.254mm)
导线直径	0.64mm (+/-0.1mm)	
温度	≦60°	

RJ45

中间连接器类型(延长/转换)

延长连接器 X 1

延长连接器 X 2

转换连接器 X 1

EtherCAT 物理层连接要求:

- 通讯信道连接长度越短越好;
- 通讯总长度不超过 100 米 (导线和连接器长度之和);
- 所有连接器总长度不超过5米;
- 连接器个数<=6(延长连接器)或4(转换连接器),且只能位于端点;
- 不建议使用连接器(干扰和衰减);
- 固定安装的线缆长度最大为 90 米,最多两个 5 米长的连接器;
- 无任何隔离措施情况下,保证 EtherCAT 电缆和动力线缆之间的最小间隔是 10mm;
- 推荐使用带双层屏蔽的超五类百兆以太网线缆或者更好线缆。

3.2.6 EtherCAT 站点地址

图 3-4 节点地址选择旋钮

DM3-EC882AC 支持三种方法设置从站地址:旋码开关设定站点地址、对象字典 2150 设定站点别名和 ESC 设定站点别名,并通过对象字典 2151 来选择。

注意:旋拨设定地址重启后生效。主站设定地址保存重启后生效。

2151h	2150	MSD	LSD	站点地址
0	显示	0~F	0~F	两位旋转开关组合设定 0~255 为节点地址值
1	设置值	-	-	对象字典 2150 设置值为节点地址值
2	-	0	0	主站配置站点别名到 ESC 的 EEPROM 0x0004 字地址

DM3-EC882AC 系列的对象字典 2151 出厂默认值为 0,此时采用 MSD 作高位和 LSD 作低位的 2 个 16 位旋转拨码组合设定值作为节点地址,节点地址范围为 0~255,设定后需重新上电才能生效。例如,当 MSD=1,LSD=4 时,设置站点地址值为 20 (MSD*16+LSD=20)。

日常使用中,绝大部分主站都会根据从站物理连接位置自动分配节点地址,由此驱动器不需要拨地址。 只有极少部分主站,如欧姆龙 PLC,需要从站拨码以设置节点地址。

第四章 参数说明与设置

4.1 参数一览表

DM3-EC882AC 数字步进网络型驱动器是标准的 EtherCAT 从站设备,遵循 EtherCAT 标准协议,可与支持该协议的标准主站通讯。

PC软件与驱动器交互, PC软件可以修改/读取驱动器所有参数、报警信息及控制驱动器试运行。

4.1.1 通讯参数

对会今曲	二一二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二	会粉夕称	同社	出厂默	参数可设	谷田
		学家口小	周江	认参数	置范围	E44304
0x1000	00	设备类型	R	0x00040192	0~32767	与 CIA 规则一致
0x1001	00	错误寄存器	R	0	0~255	位定义,参见表 5.1
0x1008	00	设备名称	R	DM3- EC882AC	0~32767	表述具体型号
0x1009	00	硬件版本	R	V1.0	0~32767	以产品名牌为准
0x100A	00	软件版本	R	V1.0	0~32767	以对象字典 3100 为准
0x1010	00	厂商参数保存	R/W	0	0~0xFFFFFFFF	保存命令: 0x65766173 10 进制: 1702257011 保存完成后返回 1
0x1011	00	厂商参数恢复	R/W	0	0~0xFFFFFFFF	恢复命令: 0x64616f6c 10 进制: 1684107116 恢复出厂完成后返回 1
0x1018	00	厂商 ID	R	0x00004321	0~32767	
0x1018	00	产品代码	R	0x00008500	0~32767	Bit0~7:servo driver Bit8~15:step driver、bit15=1 开环, bit15=0 闭环 Bit16~31:控制器使用
0x1018	00	修改编码	R	0x00000001	0~32767	无
0x1018	00	序列号	R	0x00000001	0~32767	无
0x1600	01~08	RXPDO 映射对象 1	R/W	略	0~0xFFFFFFFF	可配置的对象字典索引+子索引
0x1601	01~08	RXPDO 映射对象 2	R/W	略	0~0xFFFFFFFF	可配置的对象字典索引+子索引
0x1602	01~08	RXPDO 映射对象 3	R/W	略	0~0xFFFFFFFF	可配置的对象字典索引+子索引
0x1603	01~08	RXPDO 映射对象 4	R/W	略	0~0xFFFFFFFF	可配置的对象字典索引+子索引
0x1A00	01~08	TXPDO 映射对象 1	R/W/S	略	0~0xFFFFFFFF	可配置的对象字典索引+子索引
0x1A01	01~08	TXPDO 映射对象 2	R/W/S	略	0~0xFFFFFFFF	可配置的对象字典索引+子索引
0x1C00	01	邮箱输出类型	R	1	0~32767	无
0x1C00	02	邮箱输入类型	R	2	0~32767	无
0x1C00	03	过程数据输出类型	R	3	0~32767	无
0x1C00	04	过程数据输入类型	R	4	0~32767	无
0x1C12	00	RXPDO 分配	RW	0x1600	0x1600~0x1603	无
0x1C13	00	TXPDO 分配	RW	0x1A00	0x1A00~0x1A0 1	无

4.1.2 厂家参数列表

对象字典	子索引	参数名称	属性	出厂默 认参数	参数范围	说明
0x2000	00	峰值电流	R/W/S	1000	1一最大电流	最大电流由驱动器软件定义(mA)。
0x2001	00	细分数	R/W/S	50000	6400~51200	电机转一圈脉冲数

0x2002	00	待机时间	R/W/S	500	0-3000	单位: ms
0x2003	00	待机电流百分比	R/W/S	50	0—100	单位:%,待机使用
						bit0: 报警输出
		☆山口 1			0 03000 単位: ms 0-100 単位: %,待机使用 bit0: 报警输出 bit0: 报警输出 bit0: 报警输出 bit1: ready输出 Bit2: 到位输出 Bit3:抱闸 Bit4:通用输出 bit0: 报警输出 bit0: 报警输出 bit1: ready输出 bit1: ready输出 bit1: ready输出 Bit2: 到位输出 Bit3:抱闸 Bit4:通用输出 bit0: 报警输出 bit1: ready输出 Bit2: 到位输出 Bit2: 到位输出 Bit3:抱闸 Bit4:通用输出 bit0: 报警输出 bit1: ready输出 Bit2: 到位输出 Bit3:抱闸 Bit4:通用输出 bit0: 报警输出 Bit3:抱闸 Bit4:通用输出 bit1: ready输出 bit0: 报警输出 Bit3:抱闸 Bit4:通用输出 bit1: ready输出 bit1: ready输出 Bit2: 到位输出 Bit3:抱闸	bit1: ready 输出
0x2005	01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	R/W/S	1	1—16	Bit2: 到位输出
		り				Bit3:抱闸
						Bit4:通用输出
						bit0: 报警输出
		输出口 2				bit1: ready 输出
0x2005	02	山田口 2 功能设置	R/W/S	8	1—16	Bit2: 到位输出
						Bit3:抱闸
						Bit4:通用输出
						bit0: 报警输出
		输出口 3				bit1: ready 输出
0x2005	03	功能设置	R/W/S	4	1—16	Bit2: 到位输出
						Bit3:抱闸
						Bit4:通用输出
						bit0: 报警输出
		输出口 4				bit1: ready 输出
0x2005	04	功能设置	R/W/S	2	1—16	Bit2: 到位输出
						Bit3:抱闸
						Bit4:通用输出
						bit0:报警输出
0.0005	0.5	输出口 5	D/W/G	16	1 10	bit1: ready 输出
0x2005	05	功能设置	R/W/S	16	1-16	Bit2: 到位/输出
						BII3:池闸 Dit4:通田於山
						BIT4: 週用潮出
						DIU: 収音抽出 hit1 modu 給出
02005	06	输出口 6	D/W/C	16	1—16	Dit1: Teady 相山 Dit2: 到位绘山
0x2005	00	功能设置	K/W/S	10	1 10	DIL2. 到位抽出 Dit2:拘问
						Bit4·通田输出
						bit0. 报整输出
						bit1. ready 输出
0x2005	07	报闸输出	R/W/S	8	1—16	Bit ² · 到位输出
0.2000		功能设置	10 10/0	0	1 10	Bit3:拘闸
						Bit4:通用输出
0x2007	00	不使能模式	R/W/S	0	0/1	无
		i beneber t				0 : 正逻辑
0x2008	00	输出口	R/W/S	0	0-255	1: 反逻辑
		[阻态设置				位定义: bit0 对应 out1 以此类推
0x2009	00	 FIR 滤波使能	R/WS	0	0/1	无
0x2010	02	FIR 滤波器时间常数	R/WS	1000	50-25600	
0x2012	00	软启动时间	R/WS	1000	200~65535	50us
						电流环 PI 上电自动整定功能:
0x2013	00	电流环自整使能	R/W/S	1	0/1	0 : 不使能 1: 使能
						自整定使能时,该项只读;不使能
0x2015	00	电流环 Kp	R/W/S	300	200-32767	时用户可改写
0.001						自整定使能时,该项只读;不使能
0x2016	00	电流坏 Ki	R/W/S	20	0-32767	时用户可改写
0x2017	00	电流环 Kc	R/W/S	75	50-300	自动获取,不允许客户修改

18

0x2020	00	电机电阻	R/W/S	1000	1-20000	单位: mOhms
0x2021	00	电机电感	R/W/S	1	1-6000	单位: uH
0x2039	00	外部位置总数 H	R	0	0—0xffff	接收的位置指令累加值高 16bit
0x2040	00	外部位置总数 L	R/W	0	0—0xffff	接收的位置指令累加值低 16bit 写: 写入1 清除计数器
0x2043	00	速度参考	R	0	0—0xffff	读取
0x2048	00	母线电压	R	0	0—0xffff	读取
02051	00	由机运行支向	D/W/C	0	0/1	0: 电机运行方向不变
0x2051	00	电机运行力问	K/ W/ 5	0	0/1	1: 电机运行方向取反
0x2053	00	- 	DW/S	0	10	0:规划完成即到位
072033	00	快式工时回题并	IXW/S	0	10	10: 到位信号来自驱动
0x2056	00	故障检测选择	R/W/S	0xc3	0—0xffff	 软件检测故障选择位: 1:使能。0:屏蔽该故障检测 Bit0:过流 Bit1:过压 Bit2:EEPROM Bit3:指令超速 Bit4:速度失控 Bit7:缺相报警 Bit11:运放故障
0x2057	00	清除当前报警	R/W	0	0/1	无
0x2058	00	软启动使能	R/W/S	0	0/1	无
0x2060	00	第一抗振幅值	R/W/S	0	0—100	第一个低速共振点抑制幅值
0x2061	00	第一抗振相位 A	R/W/S	0	0-255	第一个低速共振点抑制相位 A
0x2062	00	第一抗振相位 B	R/W/S	0	0-255	第一个低速共振点抑制相位 B
0x2063	00	第二抗振幅值	R/W/S	0	0—100	第二个低速共振点抑制幅值
0x2064	00	第二抗振相位 A	R/W/S	0	0-255	第二个低速共振点抑制相位 A
0x2065	00	第二抗振相位 B	R/W/S	0	0-255	第二个低速共振点抑制相位 B
0x2066	00	第三抗振幅值	R/W/S	0	0—100	第三个低速共振点抑制幅值
0x2067	00	第三抗振相位 A	R/W/S	0	0-255	第三个低速共振点抑制相位 A
0x2068	00	第三抗振相位 B	R/W/S	0	0-255	第三个低速共振点抑制相位 B
0x2069	00	第四抗振幅值	R/W/S	0	0—100	第四个低速共振点抑制幅值
0x2070	00	第四抗振相位 A	R/W/S	0	0-255	第四个低速共振点抑制相位 A
0x2071	00	第四抗振相位 B	R/W/S	0	0-255	第四个低速共振点抑制相位 B
0x2072	00	Z 轴抗振相位	R/W/S	0	0—255	Z轴低速共振点抑制相位
0x2073	00	上电电机 自动走位	R/W/S	0	0/1	0: 上电后电机正常待机1: 上电后电机先正转 30 度再反转15 度,然后待机
0x2093	00	清除故障记录	R/W			无
0x214A	00	旋转拨码地址	R	0	0~255	显示旋转拨码状态
0x214B	00	数码管显示模式	R	0	0~255	0:显示 ESC 状态和操作模式1:显示节点地址2,:显示实时速度
0x2150	00	从站地址	R/W/S	1	1~65535	从站地址
0x2151	00	从站地址来源	R/W/S	0	0-2	0:来源于旋转拨码 1:来源于 2150h 2:来源于 ESC EEPROM (暂无)
0x2152	01	输入数字 IO 口 1 功能选择	R/W/S	32	0—32768	 1: 原点信亏 2: 止限位 4: 负限位 8: 快速停止 16: 自定义 32: Probel 功能

19

						64. Droba2 Th台
						04: Probez 功能
		松)粉点10日				1: 原点信亏 2: 止限位
0x2152	02	制八级子 IU 口 2 由此进权	R/W/S	64	0—32768	4: 贝限位 8: 厌迷停止
		2 切能远洋				10: 日足义 52: Probel 功能
						04: Probez 功能
0.0150		输入数字 IO 口	DUVC	2	0 227(0	
UX2152	03	3 功能选择	K/W/S	2	0-32/68	4: 贝限位 8: 厌迷停止
						10: 日疋义 1 原点信号 2 正阻位
0x2152	0.4	输入数字 IO 口	D/W/S	1	0-32768	1: 尿点信与 2: 止呕位 4. 角阻位 8. 地速停止
0X2152	04	4 功能选择	K/ W/S	+	0 32708	4: 贝侬亚 6: 仄述序正 16. 白宝义
						1. 百占信号 2. 正限位
0x2152	05	输入数字 IO 口	R/W/S	16	0-32768	4.
072102	03	5 功能选择	N/ W/S	10	0 52700	4. 页版世 8. 八述目 1.
						1. 原占信号 2. 正限位
0x2152	06	输入数字 IO 口	R/W/S	1	0-32768	4. 负限位 8. 快速停止
UNE TOE	00	6功能选择	10 10 10	1	0 02,000	16: 自定义
						1: 原点信号 2: 正限位
0x2152	07	输入数字 IO 口	R/W/S	8	0-32768	4: 负限位 8: 快速停止
	07	7功能选择				16: 自定义
0x2153	01	1 滤波时间	R/W/S	1000	50—60000	单位: us
		输入数字 IO 口				
0x2153	02	2 滤波时间	R/W/S	1000	50-60000	単位: us
		输入数字 IO 口				N D
0x2153	03	3 滤波时间	R/W/S	1000	50-60000	単位: us
0.0150		输入数字 IO 口	D III/G	1000	50 (0000	× 0.
0x2153	04	4 滤波时间	R/W/S	1000	50-60000	単心: us
09159	0.5	输入数字 IO 口	D/W/C	1000	50 (0000	单位
0x2155	05	5 滤波时间	K/W/S	1000	30-00000	中位: us
0	0.0	输入数字 IO 口	D/W/C	1000	50-60000	单位 118
0x2155	06	6 滤波时间	K/W/S	1000	30-00000	中位: us
0	07	输入数字 IO 口	D/W/C	1000	50-60000	单位, ug
0x2155	07	7 滤波时间	K/W/S	1000	30 00000	±-1 <u>w</u> : us
		☆ λ 粉 字 IO				0: 不变
0x2154	00	制八奴于 IO 由平极性	R/W/S	0	0~65535	1: 取反(bit0 对应外部输入 1, 以此
		电口饭性癿直				类推)
0x2155	00	输λ输电 IO 状态	P	0	0~0×ffff	bit0~7 对应 IN1~IN7
072100	00		ĸ	0	0.001111	bit8~14 对应 OUT1~OUT7
0x3100	01	驱动控制层软件版本	R	0	0~0xffff	无
0x3100	02	FPGA 软件版本	R	0	0~0xffff	无
0x3100	03	EtherCAT 应用层软件	R	0	Ո~Ոv քքքք	
0,0100	03	版本	К	0	0~0x1111	
0x3FFF	01~00	故隨列表	R/W/S	0	0~0×ffff	3FFE+01 为当前报警,
UXUITE	01 09	成時力な	K/ W/S	0	0.001111	其他为历史报警
0x4003	00	抱闸释放延时	R/W/S	50	0~3000	使能到释放抱闸信号时间,单位 ms
0x4004	00	抱闸锁定延时	R/W/S	50	0~3000	个便能到关闭 PWM 输出时间, ms
0x5001	00	内 即 便 形	K/W/S	0		
0x5002	00	ESU 句仔 ESC 安 左 叩 法	K/W	0	0~0x1111	内部调试用
0x5003	00	ESC 奇仔 猫 值	K/W	0		内部调试用
0x5004	00	DC 有门狗计数器	K/W	0	0~0xffff	内部调试用

0x5010	00	看门狗时间	R/W/s	0	0~0xffff	单位 us
0x5012	04	回零设置	R/W	5	0~0xffff	Bit0=0:不开启回零保护 Bit0=1:开启回零保护; Bit1=0:不开启停止后的回拉 Bit1=1:开启停止点的回拉 Bit2=0:到位后电机当前值=607Ch Bit2=1 507Ch 的数据作为运动偏移, 最终 6064h = 0 Bit3=0:到位后 6064h = 607Ch Bit3=1:到位后 6064h = - 607Ch Bit3=1:到位后 6064h = - 607Ch Bit4=0:第一段速度和第二段速度切 换时出现过冲不回拉,只触发原点 错误 Bit4=1:第一段速度和第二段速度切 换时出现过冲回拉
0x5013	00	电机不工作代码	R	0	0~32767	30: 指令超最大速度限制值23: 不支持当前模式
0x5014	00	超速极限值	R/W	3000	0~3000	指令速度最大限制值,r/min
0x5300	00	硬件错误 SP	R	0	0~all F	内部调试用
0x5301	00	硬件错误 LR	R	0	0~all F	内部调试用
0x5302	00	硬件错误 PC	R	0	0~all F	内部调试用
0x5303	00	用户错误 LR	R	0	0~all F	内部调试用
0x5304	00	用户错误 PC	R	0	0~all F	内部调试用
0x5305	00	总线错误 LR	R	0	0~all F	内部调试用
0x5306	00	总线错误 PC	R	0	0~all F	内部调试用

4.1.3 运动参数列表

对象字典	子索引	参数名称	属性	说明
0x603F	00	最近错误代码	R	最近一次的错误代码
0x6040	00	控制字	R/W	控制字
0x6041	00	状态字	R	状态字
0x605A	00	快速停止代码	RW	 值定义: 0: Disable drive function 1: Slow down on slow down ramp and transit into Switch On Disabled 2: Slow down on quick stop ramp and transit into Switch On Disabled 3: Slow down on current limit and transit into Switch On Disabled 4: Slow down on voltage limit and transit into Switch On Disabled 5: Slow down on slow down ramp and stay in Quick Stop Active 6: Slow down on current limit and stay in Quick Stop Active 8: Slow down on voltage limit and stay in Quick
0x6060	00	模式设置	RW	 1一位置模式 3一速度模式 6一回原点模式 8一循环同步位置模式

0x6061	00	模式查询	R	显示驱动器的工作模式
0x6062	00	命令位置	R	显示电机命令位置
0x6064	00	实际位置	R	显示电机实际位置
0x606B	00	命令速度	R	显示电机命令速度
0x606C	00	实际速度	R/W	显示电机的实际速度
0x607A	00	目标位置	R/W	位置模式下的目标位置
0x607C	00	原点偏移	R/W	原点偏置量
0x6080	00	电机最大速度	R/W	各模式的最大速度
0x6081	00	梯形速度	R/W	位置模式的最大速度
0x6082	00	起止速度	R/W	模式1起跳速度和停止速度
0x6083	00	梯形加速度	R/W	梯形曲线的加速度
0x6084	00	梯形减速度	R/W	梯形曲线的减速度
0x6085	00	快速停止减速度	R/W	急停减速度,是否使用取决于 605A 的取值
0x6098	00	回原点模式	R/W	寻找原点模式
0x6099	01	回原点模式速度	R/W	寻找极限开关的速度
0x6099	02	回原点模式速度	R/W	寻找原点信号的速度
0x609A	00	回零加/减速度	R/W	用于原点模式的加减速度
0x60B8	00	探针功能	R/W	设置探针功能
0x60B9	00	探针状态	R	探针动作状态
0x60BA	00	探针1上升沿锁存位置	R	probe1 上升沿捕获数据
0x60BB	00	探针1下升沿锁存位置	R	probe1 下升沿捕获数据
0x60BC	00	探针 2 上升沿锁存位置	R	probe2 上升沿捕获数据
0x60BD	00	探针2下升沿锁存位置	R/	probe2 下升沿捕获数据
0x60C2	01	插补时间值	R	内部调试用
0x60C2	02	插补时间单位	R	内部调试用
0x60D5	00	探针1上升沿触发计数	R	probe1 上升沿捕获次数
0x60D6	00	探针1下升沿触发计数	R	probe1 下升沿捕获次数
0x60D7	00	探针 2 上升沿触发计数	R	probe2 上升沿捕获次数
0x60D8	00	探针2下升沿触发计数	R	probe2 下升沿捕获次数
				bit0: 正限位
				bit1: 负限位
0×60FD	00	输入IO /#太	D	bit2: 原点信号
0x001D	00	· 加入IO 小心	к	bit16: 快速停止-
				bit17~bit23 对应 IN1~IN7 自定义功能时的输入电平
				bit26~bit27: 分别表示 Probe1 和 Probe2 触发完成状态
0x60FF	01	物理输出开启	RW/	当 2005+01~07 的功能设置为 bit4 时, IO 输出为主站控制; bit16~bi22
	01	1次注册山기归		对应 out1~out7.必须当 60fe+01 和 60fe+02 进行的是与操作
0x60FE	02	物理输出使能	RW	与 60FE+01 对应位相与,输出才有效
0x60FF	00	目标速度	R/W	速度模式的最大速度
0x6502	00	支持的操作模式	R	驱动器支持的操作模式

4.2 I/O 功能配置

4.2.1 输入信号

功能名称	记号	默认配置输入	功能选择 2152(01 [~] 07)	IO 逻辑功能 状态 60FD
原点信号输入	HOME	In6	1	bit2
正限位输入	РОТ	In3	2	bit1
负限位输入	NOT	In4	4	bit0
急停输入	E-STOP	In7	8	bit16
自定义输入	SI-MON	In5	16	bit17 [~] bit23 对应 In1 [~] In7
探针输入 1	Probe1	In1	32	bit26
探针输入 2	Probe2	In2	64	Bit27

注:

DM3F-EC882AC 的输入功能定义与 DM3E-556/870 的稍有不同,

原点功能被分配到了 In6 上, In2 功能为探针输入 2, 使用时请注意。

其他与输入相关的对象字典:

信号名称	功能选择控制	滤波时间设置	极性配置 2154	IO 物理状态 2155
In1	2152+01	2153+01	bit0	bit0
In2	2152+02	2153+02	bit1	bit1
In3	2152+03	2153+03	bit2	bit2
In4	2152+04	2153+04	bit3	bit3
In5	2152+05	2153+05	bit4	bit4
In6	2152+06	2153+06	Bit5	Bit5
In7	2152+07	2153+07	Bit6	Bit6

4.2.2 输出信号

信号名称	记号	默认配置输出	功能选择 2005(01 [~] 02)
报警输出	ALM	OUT1	bit0
抱闸输出	BRK-OFF	OUT2	bit3
到位输出	INP	OUT3	bit2
Ready 输出	READY	OUT4	Bit1
通用输出(自定义输出)	EX-OUT	0UT5, 0UT6	bit4
抱闸输出	BRK-OFF	OUT7	Bit3

注:如果使用抱闸输出,需要先将输出口7的极性取反,即对2008赋值64。

其他与输出相关的对象字典:

信号名称	功能选择控制	极性配置 2008	主控输出开启 60FE+01	主控输出使能 60FE+02
OUT1	2005+01	BitO	bit17 (0x20000)	bit17 (0x20000)
OUT2	2005+02	Bit1	bit18 (0x40000)	bit18 (0x40000)
OUT3	2005+03	Bit2	bit19 (0x80000)	bit19 (0x80000)

OUT4	2005+04	Bit3	Bit20 (0x100000)	Bit20 (0x100000)
OUT5	2005+05	Bit4	Bit21 (0x200000)	Bit21 (0x200000)
OUT6	2005+06	Bit5	Bit22 (0x400000)	Bit22 (0x400000)

主站控制输出又称为自定义输出、通用输出:

举例:设置 OUT5 进行自定义输出操作。

- 先设置 2005+05 为 16 (即 bit4=1),开启端口功能;
- 再对 60FE+01、60FE+02 都写 ox200000(即 bit21=1),此时 OUT5 输出。

4.3 串口调试软件

注: DM3-EC882AC 的调试软件为 Standard Protuner;

二、Standard Protuner 调试软件:

DM3-EC 系列驱动器自带 Micro USB 调试口。通过该调试口, 雷赛上位机调试软件 Standard Protuner 可以对驱动器进行参数设置。客户可使用 DM3-EC 系列驱动器 Micro USB 功能专用配线调试。

1) 软件安装

- 1) 解压安装包,安装标准平台软件 StandardProTuner_setup.exe;
- 2) 安装 Micro USB 虚拟 COM 口驱动。

带有 USB 功能的 DM3-EC 驱动器电气连接好后,先上电,再用 Micro USB 调试线,连接 PC 机 USB 口 与驱动器。如图 2 所示,在设备管理器目录下出现"IFX CDC",表示未识别状态,需要安装驱动软件。

图 2

在 IFX CDC 处"右键"---"更新驱动程序",进入驱动程序更新界面。然后按照图 2、图 3 步骤,完成驱动程序安装。

安装完成后将显示"LeadShine"字样,同时端口中显示"LeadShine"的 COM 口。如图 4 所示。

图 4

2) 软件使用

驱动器上电后 USB 枚举虚拟成 COM,打开调试软件,选择对应 COM 通讯口,点击连接。

图 5

连接成功后,会出现如图 6 所示页面,显示所有参数。在该调试界面中,可以进行参数读取、参数写入、参数保存等,点击"保存"后需等待 5s 以上后才能给驱动器断电,否则可能保存不成功。在每行参数的最右边的备注栏中,可以看到对应的参数说明。

1 No 19 1	2 / I	save					
And much							
日坦							
	-	. 🔲	Ma mana and				
读文件 另	存了了读参	数 🤟 写参数 🔤 保存 🚽	臺 参数比较 { _ >	(恢复出)			
	参数分类	◆ 1111 ・	参数值	范围	默认值	单位	备注
参 数分尖选择	2000	峰值由流	1000	100~8000	1000	mΔ	且休峰值与刑
参数	2001	由机分辨率	50000	6400~51200	50000		表示由机运行
<	2002	待机时间	500	10~3000	100	ms	单位:ms
<	2003	待机由流百分比	50	0~100	50	%	申机进入待机
<	2005.01	输出口1功能位选择	1	1~32767	1		bitl·报整输出
< .	2005.02	输出口2功能位选择	4	1~32767	1		bitli报整输出
Ş	2007	不使能时由机动作	n.	0~1	n.		0.不响应脉)中
5	2008	输出口1阻态设置	ň	0~1	Ő	1.	0故随时光課
)	2009	FIBizizia de la companya de la compan	ň	0~1	Ű		0. 不使能保用
)	2010	渡波时间	1000	0~51200	1000	115	设定渡波器的
)	2012	申流软启动时间	1000	10~32767	4096	50us	减小申机上申
	2013	申流环日白动整定使能	1	0~1	1		0.不使能:1
	2015	申流环Kn	300	200~32767	200	24	在白整定为使
	2016	申流环Ki	30	20~2000	30		在自整定为使
	2017	申流环Kc	75	80~300	100	-	自动获取仪读
	2020	申机申阻	1000	1~20000	1000	ohm	在不使能自动
	2021	申机电感	1	1~6000	1	uh	在不使能自动
	2040	外部脉冲输入总数	Ó	0~2147483647	Ó		读取接收的外
	2043	速度参考	Ō	0~32767	0	0.01rps	读取当前外部
	2048	母线申床	24	0~32767	0	0.1V	返回母线申床
	2051	申机运行方向	0	0~1	0	-	0申机运行方
	2053	到位端口输出阻态选择	Ō	0~1	Ō		0故随时输出
	2056	故隨检测选择	3	0~65535	65535		诸查阅相关文
	2057	使能清故障选择	0	0~1	0	-	0:不允许:1:允i
	2058	使能软启动时间	Û	0~10000	0	50us	为减小电机上
	2073	申机上申自动运行	0	0~1	0		0: 上电后正常
なかりますができた。 などのためです。 などのためです。 などのためです。 などのためで、 ないので、 ない	214-	1世12114 太	Ĩ	0~255	ñ		治回接四五天
4							100

图 6

如图 7 所示为例,在"显示"下拉菜单中选择"设置向导",进入参数设置向导界面,在该界面窗口下,可以完成节点 ID、电流峰值、待机参数、细分数和输入输出信号功能、滤波时间及极性的设置。

注意事项

- 1、USB 驱动器调试软件安装包可从雷赛官方网站 <u>www.leisai.com</u>对应产品链接处下载,也可从雷赛 技术支持处获取;
- 2、DM3-EC 驱动器需要使用 DM3-EC 系列驱动器 Micro USB 调试线才能够正常运用。也可使用同规格 的手机数据线进行调试;

3、一台驱动器设置完参数后,需要先断开调试软件与虚拟 COM 的连接,再拔 USB 线或断电,然后再 连接下一台驱动器并进行参数设置,否则将出现连接不上情况。

4.4 XML 设备描述文件

设备描述文件是连接驱动器与主站之间的桥梁,在使用主站软件之前,需要先安装 XML 文件。XML 设备描述文件由驱动器厂家提供,其导入方法请遵照各主站软件。雷赛 DM3-EC 系列驱动器 XML 文件可从 官网产品中心下载获得。

各主站厂家的 XML 文件导入方法各有不同。小部分厂家的设备描述文件不是 XML 文件格式的,需根据要求进行转换。图下所示为欧姆龙 NJ 系列的 XML 文件导入方法,仅供参考:

支持 DM3-EC882AC 的 XML 文件版本为 V1.71 及之后版本。

😋 🔷 📙 🕨 计算机 🛛	▶ 系统 (C:) ▶ Program Files (x86) ▶ OMI	RON 🔸 Sysmac Studio	► IODeviceProfiles	s → EsiFiles → UserEsiFiles
组织 ▼ 包含到库中 ▼	共享 ▼ 新建文件夹			
☆ 收藏夹	名称	修改日期	类型	大小
🚺 下载	CL3-EC_V1.09	2018/8/20 9:18	XML 文档	201 KB
■ 桌面	DM3E_V1.70	2017/7/25 10:42	XML 文档	357 KB
30 最近访问的位置	DM3E_V1.71	2018/9/7 10:30	XML 文档	451 KB

第五章 显示及故障处理

5.1 驱动器显示

DM3-EC882AC的显示包括2位7段数码管(右边的小数点表示使能,在驱动器使能时点亮)和4个指示灯,包括: ERR、L/A、RUN、L/A。

5.1.1 初始化阶段

驱动器上电后,两个数码管全亮 0.5S,数码管以 16 进制显示目前驱动器的实际节点地址,最大到 FF (255)。期间,数码管节点地址以 1S 的间隔进行闪烁(0.5S 亮, 0.5S 灭),时间共 5S。

初始化阶段和正常运行阶段,如果节点地址有更改,则数码管以 1S 的间隔进行闪烁(0.5S 亮, 0.5S 灭) 显示, 5S 后继续回到原来的显示状态。

5.1.2 正常运行阶段

初始化结束后,进入运行阶段。 该阶段,数码管可以进行三种显示: (可通过 214b-00h 来修改 LED 的显示内容)

- 速度 = 2
- 状态机/操作模式 = 0
- 节点地址 =1

1) 速度

运行速度,单位:转/秒

2) 状态机/操作模式

高位 LEDH 数码管显示状态机,低位 LEDL 数码管显示操作模式;以 16 进制方式进行显示。 状态机:

数码管位数值	状态机 LEDH	操作模式 LEDL
0	无通讯	无模式
1	初始化	位置模式(PP)
2	预操作	
3		速度模式(PV)
4	安全操作	
5		
6		回原点模式(HM)
7		
8	操作	循环同步位置模式(CSP)

3) 节点地址

初始化结束后如果显示节点地址,节点地址以常亮进行显示;

如果在正常运行过程中通过旋钮 MSD(高位)、LSD(低位)改变了节点地址,数码管会闪烁显示旋钮选择的地址,然后恢复到当前的显示内容。

5.2 故障显示

如果发生故障,数码管闪烁显示故障代码,直到故障清除后才返回至运行状态。以 EOeO 显示举例如下:

图 5-2 数码管故障显示的状态

待故障清除后, 数码管切换到运行阶段。

数码管 显示	含义	603Fh 对象	解决措施
E0e0	过流故障	0x2211	确保驱动器输出线未短路;确保电机未损坏
E0e1	智能功率模块(IPM)过流	0x2212	确保驱动器输出线未短路;确保电机未损坏
E0c0	直流母线电压过高	0x3211	减小驱动器供电电压;运动过程中报过压,可 增大加减速时间
E0a0	A 相运放故障	0x3150	确保电机接线正确
E0a1	B 相运放故障	0x3151	确保电机接线正确
E0a2	模拟量输入回路错误	0x3152	/
E0a3	模拟量输入回路错误	0x3153	/
E0a4	模拟量输入回路错误	0x3154	/
E0a5	直流母线回路错误	0x3201	确保驱动器供电电压在合适范围内
E0a6	温度检测回路错误	0x4201	确保驱动器供电电压在合适范围内
E0b0	控制电压过低	0x3205	
E0d0	直流母线电压过低	0x3221	增大驱动器供电电压; 牢固端子接线
E0e1	智能功率模块(IPM)过流	0x2212	确保驱动器输出线未短路;确保电机未损坏
E100	电机过载	0x8311	减小负载; 增大加减速时间; 调整接线
E120	电阻泄放回路过载	0x7701	降低电机转速;减小负载惯量
E121	泄放电阻故障	0x7702	
E190	振动过大	0x8401	
E1a0	指令超速故障	0x8402	调整指令速度大小;修改指令脉冲的输入频率; 对象字典2056写值7,可解决;
E1a1	速度失控	0x8403	检查电机绕组线是否正确接线
E1b0	位置指令频率过大	0x8612	确保正确输入位置指令
E1b1	电子齿轮设置错误	0x8503	
E210	I/F 输入端口分配错误	0x6321	
E211	I/F 输入端口功能设定错误	0x6322	
E212	I/F 输出端口功能设定错误	0x6323	
E240	EEPROM 参数保存错误	0x5530	恢复出厂设置;重新保存参数
E260	正/负超程输入有效	0x7329	
E570	强制报警输入有效	0x5441	确保输入信号正确接线
E5f0	缺相故障	0x7712	检查电机接线是否正确接线;确保电机无异常;
E801	ESM 状态机转换失败	0x8201	
E802	内存溢出	0x5510	

表 5.1 故障代码列

E807	映射对象不存在	0x8207	
E808	PDO 映射对象长度错误	0x8208	
E809	PDO 映射对象无映射属性	0x8209	
E811	无效的 ESM 转换请求	0xA001	
E812	未知的 ESM 转换请求	0xA002	
E813	引导状态请求保护	0x8213	
E816	预操作状态无效的邮箱配置	0x8216	
E815	引导状态无效的邮箱配置	0x8215	
E818	无有效的输入数据	0x8211	
E819	无有效的输出数据	0x8212	
E81a	同步错误	0xFF02	同步模式错误
E81b	同步管理器 2 看门狗超时	0x821B	网络断线,检查通讯连接
E81c	无效的同步管理器类型	0x821C	
E81d	无效的输出配置	0x821D	
E81e	无效的输入配置	0x821E	
E821	等待 ESM 初始状态	0xA003	
E822	等待 ESM 预操作状态	0xA004	
E823	等待 ESM 安全操作状态	0xA005	
E824	无效过程数据输入映射	0x8224	
E825	无效过程数据输出映射	0x8225	
E827	不支持自由运行模式	0x8727	
E828	不支持同步模式	0x8728	
E82b	无效的输入和输出	0x8210	
E82c	致命的同步错误	0x872C	
E82d	无同步错误	0x872D	
E82e	同步周期过小	0x872E	
E830	无效的 DC 同步配置	0x8730	
E832	DC 锁相环故障	0x8732	
E833	DC 同步 IO 错误	0x8733	
E834	DC 同步超时	0x8734	
E835	DC 周期无效	0x8735	
E836	无效的 DC 同步周期	0x8736	
E850	EEPROM 无法访问	0x5550	
E851	EEPROM 错误	0x5551	
E852	硬件未准备好	0x5552	
E870	不支持的模式下使能了	0x5201	设置了不支持的模式,并且做了使能操作;检 查6061的值;

5.3 故障说明

当出现报警时,驱动器会开启保护功能,电机停止运转。在数码管显示的同时,驱动器内部的对象 字典也可用于故障诊断。驱动器发生报警后,应排除故障再清除报警或重新上电,尤其是过流、过压故障。

部分上位机的故障代码以十进制显示,此时,您需要转化成16进制后,再来对照。

例如上位机报 8721,此时,通过计算器上的进制转换后显示为 16 进制的 2211,对照此表,说明驱动器报过流故障。

对象字典 3FFE+01 指示最近的故障报警,其他子索引指示为历史报警。

1001h 和 603Fh 指示当前报警状态,

其中 603Fh 指示的为 IEC 61800 规格的错误码; 1001h 指示的为 CIA 规格的错误码。

当存在多个报警时,DM3-EC所有关联的故障选项都将更新到最新的报警状态。可清除性表示是驱动器不断电的情况下是否可以清除报警:

报警清除:

向对象字典 6040 写入 128(10 进制),可清除当前可清除的报警; 向对象字典 2093 写入 1,可清除故障记录,3FFE 所有子索引将全部清零; 另外驱动器报警均能保存。

过流报警清除:

默认情况下,过流故障属于重大报警,不可清除,但如果清楚报警原因,需要清除报警的话,则可以 操作参数实现:

向对象字典 2074 写值 1,再向 0x1010,子索引 04 写入命令 0x65766173 进行保存操作,之后,即可 开启软件清除过流报警功能。

注: 过流报警清除功能,只在 MS13A 及以后版本中才支持。

E1A0 报警:

报警显示 E1A0 为指令超速故障,对对象字典 2056 写入 7,即可清除该报警,不影响驱动器运行。

缺相报警:

对对象字典 2056 的 bit7 置位为 1,可以开启缺相报警功能。设完参数并保存后,重上电生效。 缺相报警是在电机上电时检测的,电机运行过程中产生的缺相不会触发缺相报警,改接电机线后,需 要重上电才可以再次进行故障检测。

缺相报警时,前面板 ALM 指示灯红色闪烁 7 次。

5.4 EtherCAT 通讯报警

当 DM3-EC882AC 发生网络通讯故障时,通讯 ERR LED 状态、1001h 对象及 603Fh 对象的关联性如下表所列。网络通讯故障部分可保存,都是可清除的。

603F 代码	1001 代码	含义	3FFE 显示	可清除否	是否保存	ERR LED
0x5201	0x10	不支持模式下使能	0x870	1	否	不闪烁
0x8207	0x10	映射对象不存在	0x807	1	否	不闪烁
0x8208	0x10	PDO 映射对象长度错误	0x808	1	否	不闪烁
0x8209	0x10	PDO 映射对象无映射属性	0x809	1	否	不闪烁
0x8213	0x10	BOOT 不支持		1	否	快闪烁
0x8215	0x10	BOOT 模式配置无效	空白不保存	1	否	快闪烁
0x8216	0x10	Preop 无效配置		1	否	快闪烁
0x8217	0x10	无效 SM 配置		1	否	快闪烁
0x821B	0x10	SM 看门狗超时	0x081B	1	是	双闪
0x821C	0x10	无效 SM 类型	0x081C	1	是	慢闪烁
0x821D	0x10	无效输出配置		1	否	慢闪烁
0x821E	0x10	无效输入配置		1	否	慢闪烁
0x821F	0x10	无效看门狗配置		1	否	慢闪烁
0x8224	0x10	TPDO 映射无效		1	否	慢闪烁
0x8225	0x10	RPDO 映射无效		1	否	慢闪烁
0x871A	0x10	同步模式错误	0x081A	1	是	单闪
0x8727	0x10	不支持自由运行模式		1	否	慢闪烁
0x8728	0x10	不支持同步模式		1	否	慢闪烁
0x872C	0x10	致命同步错误		1	是	慢闪烁
0x872D	0x10	无同步错误		1	否	单闪
0x872E	0x10	同步周期过小		1	否	慢闪烁
0x8730	0x10	无效的 DC 配置		1	否	慢闪烁
0x8732	0x10	DC PLL 错误	0x0832	1	是	单闪
0x8733	0x10	DC 同步 IO 错误	0x0833	1	是	单闪
0x8734	0x10	DC 同步超时	0x0834	1	是	单闪
0x8735	0x10	DC 周期无效		1	否	慢闪烁
0x8736	0x10	sync0 周期无效		1	否	慢闪烁
0xA001	0x10	无效的 ESM 状态转换	0x0811	1	是	慢闪烁
0xA002	0x10	未知的 ESM 转换请求	0x0812	1	是	慢闪烁
0xA003	0x10	从站等待初始化请求	0x0821	1	是	慢闪烁
0xA004	0x10	从站等待预操作请求	0x0822	1	是	慢闪烁
0xA005	0x10	从站等待安全操作请求	0x0823	1	是	慢闪烁

第六章 常用功能

6.1 参数保存和恢复出厂值

向 0x1010 对应的子索引写入命令 0x65766173,可以将相应类别参数保存到 EEPROM 中;

向 0x1011 对应的子索引写入命令 0x64616f6c,可以恢复相应类别参数的出厂设置。

写入保存命令后,请勿立即关闭电源,特别是保存所有参数时,需等待 10s 左右才能断电,确保所有参数保存成功。

操作动作	对象字典	命令(16进制)	结果状态	备注
保存 2000~5000 系列参数	1010:04	0x65766173	返回1	保存厂商参数
保存 6000 系列参数	1010:03	0x65766173	返回1	保存运动参数
保存 1000 系列参数	1010:02	0x65766173	返回1	保存通讯参数
保存所有系列参数	1010:01	0x65766173	返回 1	保存所有参数
恢复 2000~5000 系列参数	1011:04	0x64616F6C	返回 1	恢复厂商参数
恢复 6000 系列参数	1011:03	0x64616F6C	返回1	恢复运动参数
恢复 1000 系列参数	1011:02	0x64616F6C	返回 1	恢复通讯参数
恢复所有系列参数	1011:01	0x64616F6C	返回1	恢复参数列表

表 6.1 参数的保存

6.2 控制字和运行模式

DM3-EC 支持同步模式和非同步模式,在同步运动模式下,主站进行轨迹规划并输出周期指令,驱动器按同步周期接收主站的规划指令,适合进行多轴的同步运动。DM3-EC 同步运动模式支持循环同步位置模式(CSP)。循环同步位置模式(CSP)下,轨迹规划在主站完成,DM3-EC 根据同步周期接收主站发送的位置信息,在同步信号到达时立即将位置信息输送到驱动执行。DM3-EC 支持的同步周期为: 500 us,750 us, 1ms, 2ms,4ms,8ms 或更高。

在非同步运动模式下,主站只负责发送运动参数和控制命令;DM3-EC开环步进驱动器在收到主站的运动启动命令后,将按主站发送的运动参数进行轨迹规划;在非同步运动模式下,每个电机轴之间的运动是异步的。DM3-EC非同步运动模式包含协议位置模式(PP)、协议速度模式(PV)及原点模式(HM)。

无论哪种控制模式, EtherCAT 总线主从站间数据交互都通过对象字典来实现,数据传输方式有 PDO 和 SDO 两种方式,一般情况只能二选一,根据控制需要按数据传递实时性要求及重要性分为三个级别:必须> 建议>可以。"必须"表示该模式下,对应的对象字典必须配置为 PDO 传输方式。"建议"表示该模式下, 对应的对象字典被建议配置为 PDO 传输方式,保障数据实时性,以获得更好的控制需求;如果控制要求不 高,也可以通过 SDO 通信方式进行数据传输。"可以"表示该模式下,对应的对象字典一般通过 SDO 通 信方式进行数据传输,不必一定要配置为 PDO。各个控制模式所关联的对象字典如表 6.2 所示。

控制模式	索引+子索引	名称	数据类型	访问类型	单位	PDO 配 置	SDO 通 信
	表引+子索引 名称 6040-00h 控制字 607A-00h 目标位置 607A-00h 目标位置 6040-00h 火态字 6040-00h 火态字 6064-00h 実际位置 606C-00h 実际速度 607A-00h 目标位置 6081-00h 最大速度	U16	RW	_	必须	-	
CSP 模式(8)	607A-00h 目标位置		I32	RW	Р	必须	-
CSP 模式(8)	6041-00h	状态字	U16	RO	_	必须	-
	6064-00h	实际位置	I32	RO	Р	必须	-
	606C-00h	实际速度	I32	RO	P/S	可以	可以
DD 齿子 (1)	607A-00h	目标位置	I32	RW	Р	建议	可以
控制模式 索引+子索 6040-00 607A-00 6064-00 6064-00 6066-00 607A-00 6066-00 6067A-00 60681-00	6081-00h	最大速度	U32	RW	Р	可以	可以

表 6.2 各控制模式关联对象字典

Like D. C. S.						- 1. > >.	
PV 模式(3)	60FF-00h	目标速度	I32	RW	Р	建议	可以
PP 模式(1)	6040-00h	控制字	U16	RW	_	建议	可以
PV 模式(3)	6083-00h	加速度	I32	RW	P/S^2	可以	可以
共有	6084-00h	减速度	U32	RW	P/S^2	可以	可以
	6040-00h	控制字	U16	RW	_	建议	可以
	6098-00h	回零方法	I8	RW		可以	可以
UOME 構式(6)	6099-01h	原点快速	U32	RW	P/S	可以	可以
nOME (实现(0)	6099-02h	原点慢速	U32	RW	P/S	可以	可以
	609A-00h	原点加速度	U32	RW	P/S^2	可以	可以
	607C-00h	原点偏移	U32	RW	Р	可以	可以
PP、PV 和	6041-00h	状态字	U16	RO		建议	可以
HOME	6064-00h	实际位置	I32	RO	Р	建议	可以
模式共有	606C-00h	实际速度	I32	RO	P/S	可以	可以
	60B8-00h	探针功能	U16	RW		建议	可以
	60B9-00h	探针状态	U16	RO	_	建议	可以
所有模式共有	60BA-00h	探针1捕获值	I32	RO	Р	可以	可以
	60FD-00h	数字输入	U32	RO		建议	可以
	603F-00h	最新错误代码	U16	RO	Р	建议	可以
	6060-00h	操作模式	I8	RW	_	可以	可以
	60B0-00h	位置偏移	I32	RW		可以	可以
其他关联参数	6082-00h	起跳速度	U32	RW	P/S	可以	可以
	6085-00h	急停减速度	U32	RW	P/S^2	可以	可以
	6061-00h	操作模式显示	I8	RO		可以	可以

无论采用哪种控制模式来实现对执行机构的驱动控制,都离不开控制字 6040h 和状态字和 6041h 两个 对象字典的读写,主从站通过这两个对象字典作为媒介实现指令下发和状态监视。以下重点介绍这两个对 象字典各个位的定义。

控制字(6040h)定义如表 6.3 所示。表中左半边描述 bit4~6 和 bit8,其含义视操作模式而定,主要管控 各个模式的运行执行或停止等;表中右半边描述 bit0~3 和 bit7,这几位组合管理着 402 状态机的状态跃迁 变化,从而满足复杂多样的控制需求。状态字(6041h)定义如表 6.4 所示。bit0~bit7 主要显示 402 状态机跃 迁状态,bit8~bit15 主要显示各个控制模式下运动执行或停止状态。使能的典型状态跃迁如下:

初始(00h)-----上电(06h)-----启动(07h)-----使能(0fh)-----执行运行或暂停(视操作模式,结合 bit4~6 和 bit8 下发相关的控制指令)。 各控制模式下触发运行控制的状态跃迁如表 6.5 所示。

模式/位	15~9	8	6	5	4	7	3	2	1	0	典型值	动作结 果
共有	2	暂停	衱	操作模式而	定	错误 复位	允许操 作	快速停止	电压 输出	启动		
CSP 模 式 8	-	无效	无效	无效	无效	0	0(x)	1	1	0	06h	得电
PP 模式 1	-	减速停 止	绝对/ 相对	立即触 发	新位置 点	0	0	1	1	1	07h	启动
PV 模式 3	-	减速停 止	无效	无效	无效	0	0(x)	0	1	0(x)	02h	快停
HM 模 式 6	-	减速停 止	无效	无效	启动运 动	0	1	1	1	1	0fh	使能
无						1	0(x)	0(x)	0(x)	0(x)	80h	清错
无						0	0	0	0	0	0	初始

〒〒〒(6040h) 1120-11-11-11-11-11-11-11-11-11-11-11-11-11	定义) '	(6040h)	字	控制	3	6.	表
--	----	-----	---------	---	----	---	----	---

其他位的补充说明:

位2快速停止触发逻辑是0有效,注意与其他触发的逻辑区分开。

位7错误复位触发逻辑是上升沿有效。

位5立即触发触发逻辑是上升沿有效。

模式/低8位	7	6	5	4	3	2	1	0	
共用	保留	未启动	快速停止	上电	错误	允许操作	启动	准备启 动	
模式/高8位	15	14	13	12	10	8	11	9	
共用		视操作模式而定							
CSP 模式 8	无效	无效	无效	跟随有效	无效	异常停止			
PP 模式 1	可触发应答	参数有0	无效	新位置点 应答	位置到达	异常停止	在硬件限 位有效时	PreOP 以下为	
PV 模式 3	无效	参数有0	无效	速度为0	速度到达	快速停止	会置位	0	
HM 模式 6	可触发应答	参数有0	原点错误	原点完成	位置到达	异常停止			

表 6.4 状态字(6041h)位定义

其他位的补充说明:

当驱动器投入电源后位4将置位。

位5快速停止激活,是在逻辑0下才有效,与其他位的逻辑相反。

位9远程,显示通讯状态机状态,在 ProOP 以下时为0,此时控制字(6040h)的命令将无法执行。

位11限位,在硬件限位有效时才置位。

位8非正常停止,一般在硬件限位、减速停止及快速停止触发状态下有效。

位 12 跟随主站,在 CSP 下若驱动器未使能或者不再跟随主站的指令,该位置 0。

表 6.5	各模式控制运行的状态跃迁

	步骤	0	1	2	3	4	5	6	7	8
模式	动作	预备工作	初始	得电	启动	使能	启动运行	变位	停止	故障
CSP 档式	CSP 6040	建立通信 OP	00h	06h	07h	0fh	1fh 主站 发送指令	主站 控制	主站停止 位置指令	-
·狭八 8	6041	NC 轴	250h	231h	233h	1237 h	1237h	1237h	1237h	238h
PP 模	6040	建立通信 OP 状态、设	00h	06h	07h	0fh	-	2fh->3fh	10fh	-
式 1 6041	置运动参数	250h	231h	233h	8237 h	1237h	1637h-> 1237h	1737h	1238 h	
PV 模	6040	建立通信 OP 状态,设置运	00h	06h	07h	0fh	使能后 即运行	变更速 度即可	10fh	-
式 3 6041	6041	动参数	250h	231h	233h	1637 h	1637h	1637h	1737h	1638 h
HM 模式	HM 6040 棋式	建立通信 OP	00h	06h	07h	0fh	1 fh	无效	10fh	-
6	6041	动参数	250h	231h	233h	8337 h	237h	237h	737h	238

其他位的补充说明:

PP 模式变更位置时,需要给控制字的 bit5 上升沿,才能启动新的位置运动。

6.3 探针捕获功能

探针功能是利用具有探针功能的输入信号来捕获电机实际位置,并记录下来。CL3-EC507 驱动器有两路输入 IO 信号支持探针功能,并可同时启用。探针功能相关对象字典如表 6.6 所示。

对象字典					位或对象字	典含义					
	7~6	5			4	2	1	0			
60D9h	-	探针1下降 触发	稻	探针1上升沿 触发		-	探针1模式	探针1使能			
000811	15~14	13			12	10	9	8			
	-	探针 2 下路 触发	¥沿	探针 2 上升沿 触发		-	探针2模式	探针2使能			
	7	6	5~	.3	2		1	0			
60P0b	-	-	-		探针 1 下升 沿 触发完成	探针 1 触发	上升沿 完成	探针1动作中			
00B90	15	14	13~11		10	9		8			
	探针2的 实际电平	探针1的实 际电平	-		探针 2 下升 沿 触发完成	探针 2 触发	上升沿 完成	探针2动作中			
60Bah	探针1上升	十沿捕获数据	值寄	存器							
60BBh	探针1下升	十沿捕获数据	值寄	存器							
60BCh	探针2上升	十沿捕获数据	信寄る	存器							
60BDh	探针2下升	十沿捕获数据	值寄	存器							
60FDh	bit26 状态;	为 60B9 的 b	it1 和	bit2 -	与逻辑,bit27丬	犬态为 60B9 自	的 bit9 和 bit10	与逻辑			
2152h	可将其子家	索引 01h 和 0	2h 写/	入17	或18配置为探	彩针1或探针2	2 功能				

表 6.6 探针功能相关对象字典

其他位的补充说明:

60B8h 的 bit0 和 bit8: 分别是探针 1 和探针 2 的启用、停止控制位,上升沿有效。

60B8h 的 bit1 和 bit9: 探针模式分为单次模式和连续模式,为0 时是单次模式,为1 时是连续模式。 单次模式:探针启动后,只在第一个触发信号下捕获。为了再次捕获新位置值,必须给 60B8 对象的 bit0/bit8 一个上升沿信号,以重新起动探针动作。

连续模式:探针启动后,每个触发信号下都进行捕获动作。

对象 字典	参数名称	操作	备注
60B8	探针控制字	赋值	IO 端口设为 a 接 (1) 设置 60B8 为 0x0011,探针 1 开启单次上升沿锁存; (2) 设置 60B8 为 0x 0013,探针 1 开启连续上升沿锁存; (3) 设置 60B8 为 0x 0033,探针 1 开启连续上升和下降沿锁存;
			 (1)设置 60B8 为 0x 1100,探针 2 开启单次上升沿锁存; (2)设置 60B8 为 0x 1300,探针 2 开启连续上升沿锁存; (3)设置 60B8 为 0x 3300,探针 2 开启连续上升和下降沿锁存;
60B9	探针状态字	读取	60B8 未开启探针功能时: 60B9 在探针 1 端口有高电平输入时为 0x4000, 60B9 在探针 2 端口有高电平输入时为 0x8000; 60B8 开启探针 1 功能后, 60B9 显示为 0x0001, 探针 1 有上升沿完成锁存后, 60B9 显示为 0x4003, 探针 1 有下降沿完成锁存后, 60B9 显示为 0x0005,
			探针 1 有上升沿及下降沿均完成锁存后,60B9 显示为 0x0007 (探针 1 端口 为低电平,若为高电平则为 0x4007);

			60B8 开启探针 2 功能后,60B9 显示为 0x0100, 探针 2 有上升沿完成锁存后,60B9 显示为 0x8300, 探针 2 有下降沿完成锁存后,60B9 显示为 0x0500, 探针 2 有上升沿及下降沿均完成锁存后,60B9 显示为 0x0700(探针 2 端口 为低电平,若为高电平则为 0x8700)。
60BA	探针数据 1	读取	探针 1 的上升沿锁存开启后,探针 1 端口电平由低变高时 60BA 数据相应 变化: 若 60B8 设置探针 1 为单次锁存,则 60BA 只锁存一次,后续电平由低至高 不再变化; 若 60B8 设置探针 1 为连续锁存,则 60BA 跟随电平变化,探针 1 端口电平 由低至高变化 1 次则锁存位置相应变化 1 次;
60BB	探针数据 2	读取	探针1的下降沿锁存开启后,探针1端口电平由高变低时60BB数据相应 变化: 若60B8设置探针1为单次锁存,则60BB只锁存一次,后续电平由高至低 不再变化; 若60B8设置探针1为连续锁存,则60BA跟随电平变化,探针1端口电平 由高至低变化1次则锁存位置相应变化1次
60BC	探针数据 3	读取	探针 2 的上升沿锁存开启后,探针 2 端口电平由低变高时 60BC 数据相应 变化: 若 60B8 设置探针 2 为单次锁存,则 60BC 只锁存一次,后续电平由低至高 不再变化; 若 60B8 设置探针 2 为连续锁存,则 60BC 跟随电平变化,探针 2 端口电平 由低至高变化 1 次则锁存位置相应变化 1 次
60BD	探针数据 4	读取	探针 2 的下降沿锁存开启后,探针 2 端口电平由高变低时 60BD 数据相应 变化: 若 60B8 设置探针 2 为单次锁存,则 60BD 只锁存一次,后续电平由高至低 不再变化; 若 60B8 设置探针 2 为连续锁存,则 60BD 跟随电平变化,探针 2 端口电平 由高至低变化 1 次则锁存位置相应变化 1 次
60D5	探针1上升沿触发计数器	读取	探针1上升沿有变化时, 60D5 相应累加1次。
60D6	探针1下降沿触发计数器	读取	探针1下降沿有变化时, 60D6 相应累加1次。
60D7	探针 2 上升沿触发计数器	读取	探针 2 上升沿有无变化, 60D7 相应累加 1 次。
60D8	探针2下降沿触发计数器	读取	探针 2 下降沿有变化时, 60D8 相应累加 1 次。
60FD	IO 口设置为探针输入1后 输入 IO 状态	读取	IO 口1 设为探针1,当 60B8 开启探针1 功能且探针1 有锁存状态完成时, 60FD 的 bit26 为1,且此 bit 位状态跟随物理电平变化,如单次上升沿锁存, 锁存完成后再次有上升沿变化,60BA 值不再变化,但 60FD 状态变化
60FD	IO 口设置为探针输入2 后 输入 IO 状态	读取	IO 口 2 设为探针 2,当 60B8 开启探针 2 功能且探针 2 有锁存状态完成时, 60FD 的 bit27 为 1,且此 bit 位状态跟随物理电平变化,如单次上升沿锁存, 锁存完成后再次有上升沿变化,60BC 值不再变化,但 60FD 状态变化

附录1 原点方法

DM3E 系列驱动产品支持 17~34,35/37 的回原点方式,具体定义和回原点的过程如下描述。 Negative Limit: 负限位 Positive Limit: 正限位

方法 17:

如果未激活负限位开关,电机初始运动方向为负方向。 碰到负限位开关后,电机减速反向运转,原点检出位置为负限位开关状态变化的位置。

方法 17 图示

方法 18:

如果未激活负限位开关,电机初始运动方向为正方向。 碰到负限位开关后,电机减速反向运转,原点检出位置为正限位开关状态变化的位置。

方法 18 图示

方法 19、20

基于启动时原点开关的状态以决定初始化运转方向。 原点检出位置是原点开关的状态变化后的负方向侧、或者负方向侧。

方法 21、22

此方法类似方法 19/20。 基于启动时原点开关的状态以决定初始化运转方向。 原点检出位置是原点开关的状态变化后的正方向侧、或者负方向侧。

方法 23、24、25、26:

此方法中,使用原点开关和正信号。 方法 23、24 的初始化动作方向是原点开关如果在开始时已经激活,则为负方向; 方法 25、26 的初始化动作方向是原点开关如果在开始时已经激活,则为正方向; 原点检出位置是原点开关状态变化的位置。 (请参照下图)

方法 23、24、25、26 图示

方法 27、28、29、30:

此方法中,使用原点开关和负信号。 方法 27、28 的初始化动作方向是原点开关如果在开始时已经激活,则为正方向; 方法 29、30 的初始化动作方向是原点开关如果在开始时已经激活,则为负方向; 原点检出位置是原点开关状态变化的位置。 (请参照下图)

方法 27、28、29、30 图示

方法 33,34

此方法中,仅使用 Z 信号。 在图中所示方向动作后检出 Z 信号作为原点位置。

方法 33、34 图示

方法 35,37:

以当前点作为原点

35 和 37 功能相同,但基于 ETG 规格,推荐使用 37。

方法 35、37 图示

附录2 对象字典总表

对象字典	子索引	参数名称	属性	出厂默	参数可设 置范围	说明
0x1000	00	设备类型	R	0x00040192	0~32767	与 CIA 规则一致
0x1001	00	错误寄存器	R	0	0~255	位定义,参见表 5.1
0x1008	00	设备名称	R	DM3- EC882AC	0~32767	表述具体型号
0x1009	00	硬件版本	R	V1.0	0~32767	以产品名牌为准
0x100A	00	软件版本	R	V1.0	0~32767	以对象字典 3100 为准
0x1010	00	厂商参数保存	R/W	0	0~0xFFFFFFFF	保存命令: 0x65766173 10 进制: 1702257011 保存完成后返回 1
0x1011	00	厂商参数恢复	R/W	0	0~0xffffffff	恢复命令: 0x64616f6c 10 进制: 1684107116 恢复出厂完成后返回 1
0x1018	00	厂商 ID	R	0x00004321	0~32767	
0x1018	00	产品代码	R	0x00008500	0~32767	Bit0~7:servo driver Bit8~15:step driver、bit15=1 开环,bit15=0 闭环 Bit16~31:控制器使用
0x1018	00	修改编码	R	0x00000001	0~32767	无
0x1018	00	序列号	R	0x00000001	0~32767	无
0x1600	01~08	RXPDO 映射对象 1	R/W	略	0~0xFFFFFFFF	可配置的对象字典索引+子索引
0x1601	01~08	RXPDO 映射对象 2	R/W	略	0~0xFFFFFFFF	可配置的对象字典索引+子索引
0x1602	01~08	RXPDO 映射对象 3	R/W	略	0~0xFFFFFFFF	可配置的对象字典索引+子索引
0x1603	01~08	RXPDO 映射对象 4	R/W	略	0~0xFFFFFFFF	可配置的对象字典索引+子索引
0x1A00	01~08	TXPDO 映射对象 1	R/W/S	略	0~0xFFFFFFFF	可配置的对象字典索引+子索引
0x1A01	01~08	TXPDO 映射对象 2	R/W/S	略	0~0xFFFFFFFF	可配置的对象字典索引+子索引
0x1C00	01	邮箱输出类型	R	1	0~32767	无
0x1C00	02	邮箱输入类型	R	2	0~32767	无
0x1C00	03	过程数据输出类型	R	3	0~32767	无
0x1C00	04	过程数据输入类型	R	4	0~32767	无
0x1C12	00	RXPDO 分配	RW	0x1600	0x1600~0x1603	无
0x1C13	00	TXPDO 分配	RW	0x1A00	0x1A00~0x1A0 1	无
0x2000	00	峰值电流	R/W/S	1000	1一最大电流	最大电流由驱动器软件定义(mA)。
0x2001	00	细分数	R/W/S	50000	6400~51200	电机转一圈脉冲数
0x2002	00	待机时间	R/W/S	500	0-3000	单位: ms
0x2003	00	待机电流百分比	R/W/S	50	0—100	单位:%,待机使用
0x2005	01	输出口1 功能设置	R/W/S	1	1—16	bit0:报警输出 bit1: ready输出 Bit2:到位输出 Bit3:抱闻 Bit4:通用输出
0x2005	02	输出口2 功能设置	R/W/S	8	1—16	bit0:报警输出 bit1: ready输出 Bit2:到位输出 Bit3:抱闸 Bit4:通用输出
0x2005	03	制 田 口 3 功能设置	R/W/S	4	1—16	bit1: ready 输出

						Bit?: 到位输出
						Dit2. 时回袖田 Dit2. 均回袖田
						Dit4.通田給山
						DI(4.地用相山
						bit0: 拔警输出
		│ 输出口 4				bitl: ready 输出
0x2005	04	功能设置	R/W/S	2	1—16	Bit2: 到位输出
						Bit3:抱闸
						Bit4:通用输出
						bit0: 报警输出
		检山口 5				bit1: ready 输出
0x2005	05	相山口り	R/W/S	16	1—16	Bit2: 到位输出
		り - 切 肥 以 <u>自</u>				Bit3:抱闸
						Bit4:通用输出
						bit0: 报警输出
						bit1: ready 输出
0x2005	06	输出口 6	R/W/S	16	1-16	Bit?: 到位输出
ONECCO	00	功能设置	10 10 5	10	1 10	Bit3:拘阃
						Bit4:通田输山
0.000-	07	报闸输出	DUNG			bit1: ready 输出
0x2005	07	功能设置	R/W/S	8	1-16	Bit2: 到位输出
						Bit3:抱闸
						Bit4:通用输出
0x2007	00	不使能模式	R/W/S	0	0/1	无
						0: 正逻辑
0x2008	00	旧大识罢	R/W/S	0	0—255	1: 反逻辑
		阻芯以且				位定义: bit0 对应 out1 以此类推
0x2009	00	FIR 滤波使能	R/WS	0	0/1	无
0x2010	01	FIR 滤波器时间	R/WS	1000	50-25600	单位: us
0x2012	00	软启动时间	R/WS	1000	200~65535	50us
						电流环 PI 上电自动整定功能:
0x2013	00	电流环自整使能	R/W/S	1	0/1	0: 不使能 1: 使能
						自整定使能时,该项只读,不使能时用户可
0x2015	00	电流环 Kp	R/W/S	300	200—32767	
						白敷空使能时 这顶几边 不使能时用户可
0x2016	00	电流环 Ki	R/W/S	20	0—32767	日奎定使能响,该项公医; 个使能可用户可 北京
0.0017	00	中次开业	D/IU/C		50, 200	以与 点 <u>土</u> 井雨, 工人), 定应点换 <u>力</u>
0x2017	00	电流坏 Kc	R/W/S	75	50-300	日切获取,个冗计各户修改
0x2020	00	电机电阻	R/W/S	1000	1-20000	単位: mOhms
0x2021	00	电机电感	R/W/S	1	1—6000	单位: uH
0x2039	00	外部位置总数 H	R	0	0—0xffff	接收的位置指令累加值高 16bit
0.2010	00	从 却 位 署 台 粉 Ⅰ	D/W	0	0—0×ffff	接收的位置指令累加值低 16bit
072040	00	/ //即位直心致 L	IX/ W	0	0 UXIIII	写: 写入1清除计数器
0x2043	00	速度参考	R	0	0—0xffff	读取
0x2048	00	母线电压	R	0	0—0xffff	读取
						0: 电机运行方向不变
0x2051	00	电机运行万问	R/W/S	0	0/1	1: 电机运行方向取反
						0: 规划完成即到位
				0	10	
0x2053	00	模式1到位选择	RW/S	0	10	10: 到位信号来自驱动
0x2053	00	模式1到位选择	RW/S	0	10	10:到位信号来自驱动 软件检测故障选择位。
0x2053	00	模式1到位选择	RW/S	0	00_fff	10:到位信号来自驱动 软件检测故障选择位: 1: 使能 0: 展転送故障检测
0x2053 0x2056	00	模式1到位选择 故障检测选择	RW/S	0 0xc3	0—0xffff	 10:到位信号来自驱动 软件检测故障选择位: 1:使能。0:屏蔽该故障检测

						Bit1:过压
						Bit2:EEPROM
						Bit3:指令超速
						Bit4:速度失控
						Bit7:缺相报警
						Bit11:运放故障
0x2057	00	清除当前报警	R/W	0	0/1	无
0x2058	00	软启动使能	R/W/S	0	0/1	无
0x2060	00	第一抗振幅值	R/W/S	0	0—100	第一个低速共振点抑制幅值
0x2061	00	第一抗振相位 A	R/W/S	0	0—255	第一个低速共振点抑制相位 A
0x2062	00	第一抗振相位 B	R/W/S	0	0—255	第一个低速共振点抑制相位 B
0x2063	00	第二抗振幅值	R/W/S	0	0—100	第二个低速共振点抑制幅值
0x2064	00	第二抗振相位 A	R/W/S	0	0—255	第二个低速共振点抑制相位 A
0x2065	00	第二抗振相位 B	R/W/S	0	0—255	第二个低速共振点抑制相位 B
0x2066	00	第三抗振幅值	R/W/S	0	0—100	第三个低速共振点抑制幅值
0x2067	00	第三抗振相位 A	R/W/S	0	0—255	第三个低速共振点抑制相位 A
0x2068	00	第三抗振相位 B	R/W/S	0	0—255	第三个低速共振点抑制相位 B
0x2069	00	第四抗振幅值	R/W/S	0	0—100	第四个低速共振点抑制幅值
0x2070	00	第四抗振相位 A	R/W/S	0	0—255	第四个低速共振点抑制相位 A
0x2071	00	第四抗振相位 B	R/W/S	0	0-255	第四个低速共振点抑制相位 B
0x2072	00	Z轴抗振相位	R/W/S	0	0-255	Z 轴低速共振点抑制相位
						0: 上电后电机正常待机
0x2073	00	上电电机	R/W/S	0	0/1	1: 上电后电机先正转 30 度再反转 15 度,
0.1120110		自动走位	10 11 5	·		然后待机
0x2093	00		R/W			无
0x214A	00	旋转拨码抽册	R	0	0~255	显示旋转拨码状态
UNDI III	00			•	0.200	0. 显示 FSC 状态和操作模式
0x214B	00	教码管显示模式	R	0	0~255	1. 显示节占地址
0.2110	00	X+16 10/17/	R		0 235	 2. 显示实时速度
0x2150	00	从站抽扑	R/W/S		1~65535	
0.2100	00	Лани	10 11/5	1	1 05555	0. 李順千旋转拨码
0x2151	00	从站地址来源	R/W/S	0	0—2	1.来源于 2150h
0.2101	00		10 10/0	Ū	0 2	2. 来源于 FSC FFPROM (
						 7. 原占信号 2. 正限位
	X	输λ 数字 IO Π				4.
0x2152	01	1功能选择	R/W/S	32	0—32768	4. 英報告 6. 代述自主 16. 自定义 32. Probe1 功能
		1 33162217				64. Probe? 功能
						1. 百占信号 2. 正阻位
		输λ 数字 ΙΟ □				1. 小瓜旧 7 4. 正KUL 1.
0x2152	02	11八级于10日	R/W/S	64	0—32768	4: 贝限世 6: 八坯厅工 16. 白宁义 22. Probe1 功能
		2 功能起注				10: 日足文 52: 1100c1 功能
						1. 百古信号 2. 正阻位
09159	02	输入数字 IO 口	D/W/C	2	0-22769	1: 尿点信与 2: 止喉位 4
0X2102	03	3 功能选择	K/W/S	2	0-32708	4: 贝限位 8: 厌迷停止 14: 白空ツ
						10: 日疋文 1. 西古佐日 2. 工四份
0.0150		输入数字 IO 口	D/W/C	4	0 227(9	1: 尿点信亏 2: 止限位
0x2152	04	4 功能选择	K/W/S	4	0-32/68	4: 以限业 8: 厌迷停止
						10: 目定人
0.01-5		输入数字 IO 口				1: 原点信号 2: 止限位
0x2152	05	5 功能选择	R/W/S	16	0—32768	4: 负限位 8: 快速停止
						16: 目定义
0x2152	06	输入数字 IO 口	R/W/S	1	0-32768	1: 原点信号 2: 正限位

		イ エムムビント 4マ				4
		6 切能选择				4: 贝限位 8: 快速停止 16. 自定义
						1. 百占信号 2. 正阻位
0.0150	. –	输入数字 IO 口	D/W/C	0	0 227(9	
0X2152	07	7 功能选择	K/W/S	8	0-32/68	4: 贝限位 8: 厌迷停止
						16: 目定义
0x2153	01	输入数字 IO 口	R/W/S	1000	50-60000	单位: us
0112100	01	1 滤波时间	10.000	1000	20 00000	
09159	00	输入数字 IO 口	D/W/C	1000	50-60000	单位 112
0X2100	02	2 滤波时间	K/W/S	1000	50 00000	平位: us
		输入数字 IO 口				
0x2153	03	3 滤波时间	R/W/S	1000	50-60000	里位: us
		输入数字 IO 口				
0x2153	04	4 滤波时间	R/W/S	1000	50-60000	单位: us
		→ 沁波町町 - 絵〉 粉字 IO □				
0x2153	05	111八致于 IO 口	R/W/S	1000	50-60000	单位: us
		3 滤波时间				
0x2153	06	输入数字 IO 凵	R/W/S	1000	50-60000	单位: us
		6 滤波时间				
0v2153	07	输入数字 IO 口	R/W/S	1000	50-60000	单位.us
012100	07	7 滤波时间	N/W/5	1000	30 00000	
0.0154		输入数字 IO	D /TU/G	0		0: 不变
0x2154	00	电平极性配置	R/W/S	0	0~65535	1: 取反(bit0 对应外部输入 1, 以此类推)
						bit0~7 对应 IN1~IN7
0x2155	00	输入输出 IO 状态	R	0	0~0xffff	bit8~14 对应 OUT1~OUT7
		吸动按制层软件版				
0x3100	01	龙幼庄时层扒开版	R	0	0~0xffff	无
0x3100	02	FPGA 软件版本	R	0	0~0xffff	无
		EtherCAT 应用层软				
0x3100	03	件版本	R	0	0~0xffff	无
		117/231				3FFF+01 为当前报警。
0x3FFE	01~09	故障列表	R/W/S	0	0~0xffff	甘仙为历中招效
0×4002	00	均间环边延时	D/M/C	50	0~2000	在此到级边边间信号时间 单位 mg
0x4003	00	抱闸样放延可	R/W/S	50	0~3000	使能到样似抱附信与时间,单位 IIIS
0x4004	00	内部 使能	R/W/S	0	0-1	中如调注用
05002	00	FIP C 宏方盟	D/W	0	0 0ffff	内印姆风用
0x3002	00	ESC 可什品	K/W	0	0~0x1111	内部调试用 ————————————————————————————————————
0x5003	00	ESC 奇仔 猫 值	R/W	0	0~0xffff	内部调试用
0x5004	00	DC 看门狗计数器	R/W	0	0~0xffff	内部调试用
0x5010	00	看门狗时间	R/W/s	0	0~0xffff	单位 us
						Bit0=0:不开启回零保护
						Bit0=1:开启回零保护;
						Bit1=0:不开它停止后的回拉
						BITI=1.开启停止点的回拉
						Bit2=0:到位后电机当前值=607Ch
						Bit2=1:607Ch 的数据作为运动偏移 , 最终
0x5012	04	回零设置	R/W	5	0~0xffff	6064h = 0
						Bit3=0:到位后 6064h= 607Ch
						Bit3=1:到位后 6064h = - 607Ch
						 Bit4=0:第一段速度和第二段速度切换时出
						BIT4=1:
						现过冲回拉

0x5013	00	电机不工作代码	R	0	0~32767	30: 指令超最大速度限制值 23. 不支持当前模式
0x5014	00	超速极限值	R/W/S	3000	0~3000	指今速度最大限制值,r/min
0x5300	00	硬件错误 SP	R	0	0∼all F	内部调试用
0x5301	00	硬件错误IR	R	0	0~all F	内部调试田
0x5302	00	硬件错误 PC	R	0	0~all F	内部调试田
0x5302	00	田白錯逞」	R	0	0°all F	内部调试田
0x5304	00	田白錯逞 DC	R	0	0~all F	内部调试田
0x5205	00	山/ 宙庆 FC	D	0	0~all E	内或调试田
0x5305	00	△线相庆 LN	D	0	0 all F	内动油汽田
0x5300	00	志线相庆 PC 最近进得代码	D	0		内
UXOU3F	00	取近钳庆代屿	ĸ	0~65535	0	取但《仍相伏代码
0x6040	00	控制子	R/W	0~65535	0	控制子
0x6041	00	状态字	R	0~65535	0	状态字
0x605A	00	快速停止代码	R/W	0~65535	5	 值定义: 0:立即停止后,切换到 switch on disable 状态,断使能 1:通过 6084 电机减速停止后, switch on disable 状态,断使能 2:通过 6085 电机减速停止后, switch on disable 状态,断使能 3:通过 60C6 电机减速停止后, switch on disable 状态,断使能 4:立即停止后, switch on disable 状态 5:通过 6084 电机减速停止后, quick stop 状态 6:通过 6085 电机减速停止后, quick stop 状态 7:通过 60C6 电机减速停止后, quick stop 状态 8:通过 60C6 电机减速停止后, quick stop 状态
0x6060	00	模式设置	R/W	0~255	8	 1一位置模式 3一速度模式 6一回原点模式 8一循环同步位置模式
0x6061	00	模式查询	R	0~255	8	显示驱动器的工作模式
0x6062	00	命令位置	R	-2147483648 ~2147483647	0	显示电机命令位置
0x6064	00	实际位置	R	-2147483648 ~2147483647	0	显示电机实际位置
0x606B	00	命令速度	R	-2147483648 ~2147483647	0	显示电机命令速度
0x606C	00	实际速度	R/W	-2147483648 ~2147483647	0	显示电机的实际速度
0x607A	00	目标位置	R/W	-2147483648 ~2147483647	0	位置模式下的目标位置
0x607C	00	原点偏移	R/W	-2147483648 ~2147483647	0	原点偏置量
0x6080	00	最大限制速度	R/W	-2147483648 ~2147483647	3000	
0x6081	00	梯形速度	R/W	-2147483648 ~2147483647	50000	位置模式的最大速度
0x6082	00	起止速度	R/W	-2147483648 ~2147483647	0	模式1起跳速度和停止速度
0x6083	00	梯形加速度	R/W	-2147483648 ~2147483647	4000	梯形曲线的加速度
0x6084	00	梯形减速度	R/W	-2147483648	4000	梯形曲线的减速度

				~2147483647		
0x6085	00	快速停止减速度	R/W	-2147483648 ~2147483647	40000000	急停减速度,是否使用取决于 605A 的取值
0x6098	00	回原点模式	R/W	1~100	19	寻找原点模式
0x6099	01	回原点模式速度	R/W	-2147483648 ~2147483647	50000	寻找极限开关的速度
0x6099	02	回原点模式速度	R/W	-2147483648 ~2147483647	25000	寻找原点信号的速度
0x609A	00	回零加/减速度	R/W	-2147483648 ~2147483647	25000	用于原点模式的加减速度
0x60B8	00	探针功能	R/W	0~65535	0	设置探针功能
0x60B9	00	探针状态	R	0~65535	0	探针动作状态
0x60BA	00	探针 1 上升沿锁存 位置	R	-2147483648 ~2147483647	0	probe1 上升沿捕获数据
0x60BB	00	探针1下升沿锁存 位置	R	-2147483648 ~2147483647	0	probe1 下升沿捕获数据
0x60BC	00	探针 2 上升沿锁存 位置	R	-2147483648 ~2147483647	0	probe2 上升沿捕获数据
0x60BD	00	探针 2 下升沿锁存 位置	R/	-2147483648 ~2147483647	0	probe2 下升沿捕获数据
0x60C2	01	插补时间值	R	0~255	2	内部调试用
0x60C2	02	插补时间单位	R	-128-127	0	内部调试用
0x60D5	00	探针1上升沿触发 计数	R	0~65535	0	probe1 上升沿捕获次数
0x60D6	00	探针1下升沿触发 计数	R	0~65535	0	probe1 下升沿捕获次数
0x60D7	00	探针 2 上升沿触发 计数	R	0~65535	0	probe2 上升沿捕获次数
0x60D8	00	探针 2 下升沿触发 计数	R	0~65535	0	probe2 下升沿捕获次数
0x60FD	00	输入 IO 状态	R	0~ 4294967296	0	bit0: 正限位 bit1: 负限位 bit2: 原点信号 bit16: 快速停止 bit17~bit23 对应 IN1~IN7 自定义功能时的 输入电平 bit26~bit27: 分别表示 Probe1 和 Probe2 触 发完成状态
0x60FE	01	物理输出开启	RW	0~ 4294967296	0	当 2005+01~07 的功能设置为 bit4 时, IO 输 出为主站控制; bit16~bi22 对应 out1~out7. 必须当 60fe+01 和 60fe+02 进行的是与操作
0x60FE	02	物理输出使能	RW	0~ 4294967296	0	与 60FE+01 对应位相与,输出才有效
0x60FF	00	目标速度	R/W	-2147483648 ~2147483647	0	速度模式的最大速度
0x6502	00	支持的操作模式	R	0~ 4294967296	165	驱动器支持的操作模式

附录3 常见故障处理

一、 组网时节点无法正常通讯,或节点报通讯错误

1. 如果是第一次使用该型号产品,检查 XML(设备描述文件)的版本是否正确。大部分主站支持扫描从站,建议以扫描的方式建立组态,可以避免或快速定位问题。

2. 部分主站区分物理连接的 IN 和 OUT,检查 IN 或 OUT 是否正确。

3. 检查主站与从站设置的 PDO 同步周期是否一致。

4. 不支持的 PDO 同步周期(Ethercat 通讯周期),如 1.1ms、0.9ms 等,常见 PDO 同步周期为 250us/500us/1ms/2ms/4ms 等。咨询厂商是否支持你设定的同步周期。

5. 部分主站需要设置从站节点号,检查节点号拨的是否与组态设定一致且没有重复。大部分主站支 持扫描从站,建议以扫描的方式建立组态,可以避免或快速定位问题。

6. 网线有问题或接触不好,更换网线。与可以正常连接的节点上的网线进行对调,可以快速定位问题。

7. 驱动器本身问题。通过更换或对调可以正常连接的驱动器,可以快速定位问题。

二、 主站操作,从站不使能。

1. 查看驱动器状态。正常情况下,驱动器 IN 和 OUT 网口 L/A 快速闪烁, run 灯常量, Err 灯熄灭。驱动器的 Power 灯常亮, ALM 灯熄灭。

2. PDO 配置或 PDO 映射错误。可以参考应用指导手册,按照说明正确配置 PDO 或 PDO 映射。

3. 查看监视对象字典 6040 的值是否为 16#F, 监视字典 6041 的 bit0~bit3 是否为 0111。

4. 检查主站是否有警告或错误。清除主站报警或警告。

5. 主站显示使能完成,而电机没有使能。检查电机线接线是否接错或断线。检查驱动器电流参数是 否设置正确。

三、 定位运行便报错

1. 查看驱动器是否有报警。检查驱动器 ALM 灯和 EtherCat 网口 err 灯是否有闪烁,如有报警,查看驱动器使用手册,根据报警说明定位问题。

2. 操作模式不对。监视对象字典 6060 是否为 8(CSP 模式)。

3. PDO 配置异常。部分主站需要检查从站对象字典 6061 返回的值是否正确,如果 6061 没有配置, 从站可能会不动或者主站报警。

4. 限位信号有效。检查限位信号状态与主站设定的逻辑是否一致。从站输入端口极性是否与使用的 限位开关一致。限位开光是否损坏。限位开关与从站之间的接线是否正确。对象字典 60FD 的 bit 位与主站 之间的映射错误。

四、 电机不转

1. 上位机指令没有给到。查看对象字典 607A(指令位置)的值有没有变化,如没有变化,则客户需检查程序是否有异常,或者限位是否生效。

2. 限位信号生效。检查限位信号状态与主站设定的逻辑是否一致。从站输入端口极性是否与使用的限位开关一致。限位开光是否损坏。限位开关与从站之间的接线是否正确。对象字典 60FD 的 bit 位与主站 之间的映射错误。 3. 上位机指令正常,电机不转。电流设置太小,电机没有力,带不动负载。负载太重,电机选型错误。速度设置太大,导致电机堵转。加减速度设置太大,导致电机堵转。电机本身异常。以上可能都可以 通过让电机空载,且设定电机速度为 60rpm,加减速时间不小于 200ms 进行测试来定位问题。

五、 回原点无法完成

1. 回原点方法错误。目前回原点可分为采用主站回原点方法,回原点时 6060 等于 8;采用从站回原 点方法,回原点时 6060 等于 6;采用主从配合的回原点方法,回原点时 6060 等于 8 然后等 6。询问主站 厂商,其主站回原点方式,并仔细查看所选择的回原点方法,回原点相关参数,方向是否正确及所选回原 点方法中所涉及到的传感器信号是否正常。

2. 停在感应器上,一直处理 Busy 状态。由于定位未完成(详见第五点描述),回原点无法继续往下进行导致。部分主站的回原点是主从站结合方式(松下和基恩士),通过主站回原点方法找到原点位置后,切换至从站回原点方法进行坐标清零,此时需要修改 6060=6 至回原点模式,如 PDO 内无 6060 或没有配置或从站回原点方法配置错误,均会导致回原点无法完成。

六、 运行中偶尔掉线

1. 总线是固定的那个驱动器掉线。网线问题。网线与驱动器接口接触不良。上一台驱动器的 OUT 口问题。驱动器本身问题。以上可能都可以通过对调驱动器或对调网线来定位问题。

2. 驱动器随机性掉线。干扰问题:网线质量差,建议使用超五类及以上,工业级网线,带双绞屏蔽。 保证设备接地良好。电气柜布局时,强弱电气注意分离。远离大功率强干扰器件,如等离子分生器,激光 发生器,变频器等。

数码管 显示	含义	603Fh 对象	解决措施	
E0e0	过流故障	0x2211	确保驱动器输出线未短路;确保电机未损坏	
E0e1	智能功率模块(IPM)过流	0x2212	确保驱动器输出线未短路;确保电机未损坏	
E0c0	直流母线电压过高	0x3211	减小驱动器供电电压;运动过程中报过压,可增大	
	中冻扑测回收件泪		加碱迷时间	
EUaU	电流位测凹路错误	UX3150		
EOa1	电流检测回路错误	0x3151	确保电机接线正确	
E0d0	直流母线电压过低	0x3221	增大驱动器供电电压;牢固端子接线	
E100	电机过载	0x8311	减小负载; 增大加减速时间; 调整接线	
F120	也入初油力陪	0,0402	调整指令速度大小;修改指令脉冲的输入频率;确	
EIGO	相交迎述以降	0x8402	体痈妈奋按线正确; 对象字典2056写值0x7,可屏蔽该故障;	
E240	EEPROM 参数保存错误	0x5530	恢复出厂设置;重新保存参数	
E5f0	缺相故障	0x7712	检查电机接线是否正确接线;确保电机无异常;	
E816	预操作状态无效的邮箱配置	0x8216	检查主站配置	
E81a	同步错误	0xFF02	同步模式错误	
E81b	同步管理器 2 看门狗超时	0x821B	网络断线,检查通讯连接;驱动器损坏	
E870	不支持的模式下使能	0x5201	设置了不支持的模式,并且做了使能操作;检查6061 的值;	

七、 常见数码管报警显示

手册版本说明:

版本	更新时间	更新内容
V1.0	20181022	第一版
V1.1	20191220	更新输入口功能, In2 为探针 2, In6 为原点输入 增加 LMS 新调试软件的说明
V1. 2	20200213	 调整对象字典结构; 修改网线部分说明; 加入 5012-04,更改回零方法; 修改 5014、6080 最大速度限制值; 修改调试软件部分内容; 修改报警代码列表; 增补故障处理部分内容; 加入对象字典总表; 修改探针部分的内容; 增加附录 3;
V1.3	20200423	修改滤波时间处的描述错误

驱动器版本说明:

驱动器版本查看铭牌,软件版本查看对象字典 3100h: 01 和 3100h: 03

深圳市雷赛智能控制股份有限公司地址:深圳市南山区学苑大道 1001 号南山智园 A3 栋 11 楼技术热线: 400-885-5501网址: www.leisai.comEmail: marketing@leisai.com

传真: 0755-26402718

