

深圳市雷赛智能控制股份有限公司

地 址:深圳市南山区学苑大道 1001 号南山智园 A3 栋 9~11 楼

邮 编: 518000

电话: 400-885-5521 传真: 0755-26402718

Email: marketing@leisai.com

网 址: www.leisai.com

上海分公司

地 址: 上海市淞江区九亭镇涞寅路 1881 号 10 栋

电话: 021-37829639 传真: 021-37829680

北京办事处

地 址: 北京市朝阳区北苑路 13 号院领地 office1 号楼 A 单元 606 号

电话: 010-52086876 传真: 010-52086875

DM556-CAN

DM556-CAN 两相步进驱动器说明书

两相步进驱动器 使用说明书

版权所有 不得翻印【使用前请仔细阅读本手册,以免损坏驱动器】

- ◆ 非常感谢您购买雷赛的产品
- ◆ 使用前请详细阅读此说明书,正确使用该产品
- ◆ 请妥善保管此说明书

雷赛智能官方代理:雷创智能科技

前言

感谢您选用深圳市雷赛智能控制股份有限公司的 DM556-CAN 步进电机驱动系统,本手册提供了使用该系统的所需知识及注意事项。

操作不当可能引起意外事故,在使用本产品之前,请务必仔细阅读本说明书

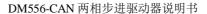
由于产品的改进, 手册内容可能变更, 恕不另行通知。 用户对产品的任何改动我厂将不承担任何责任, 产品的保修单将因此作废。

阅读本手册时,请特别注意以下提示:

警 告

- 只有技术人员才能安装,调试或维护本产品
- 确保线路连接正确, 方可通电测试
- 错误的电压或电源极性可能会损坏驱动器或造成其他事故

雷赛智能官方代理:雷创智能科技


www.leadtronker.com

Authorized Distributor of Leadshine Technology

目 录

一、产品简介	2
1.1 概述	2
1.2 特点	2
1.3 应用领域	2
二、电气、机械和环境指标	2
2.1 电气指标	2
2.2 使用环境及参数	2
2.3 机械安装图	3
2.4 散热方式	
三、驱动器接口描述和拨码说明	3
3.1 接口描述	3
3.2 拨码开关说明	4
四、DM556-CAN 应用说明	6
4.1 配线说明	6
4.2 驱动器接线	6
4.3 电机选配	7
4.4 供电电源选择	8
4.5 PC 软件参数设置	9
五、常见问题	12
雷赛产品保修条款	14

DM556-CAN 数字式两相步进驱动器

一、产品简介

1.1 概述

DM556-CAN 是雷赛公司推出的一款基于 CANopen 协议的高性能步进电机驱动器,采用最新 32 位 DSP 技术,可通过 CANopen 指令设置驱动器的参数和控制电机实时运行,在多轴联动的应用场合,可以极大地减少布线,增强驱动器运行的可靠性。

1.2 特点

- 工作电压为直流输入电压为 20~50VDC, 推荐工作电压 36V, 过压 90V;
- 可设定相电流 0.1A~5.6A (峰值), 出厂默认值为 3.2A (峰值);
- 支持 CANopen 通讯协议,地址和波特率通过拔码设定;
- 3路 IO 输入功能,差分隔离输入,输入频率最大为20KHz,输入电压+5~24V兼容;
- 1 路报警输出功能,隔离 OC 输出,输出能力最大 100mA,外接最大上拉电压 24V 直流:

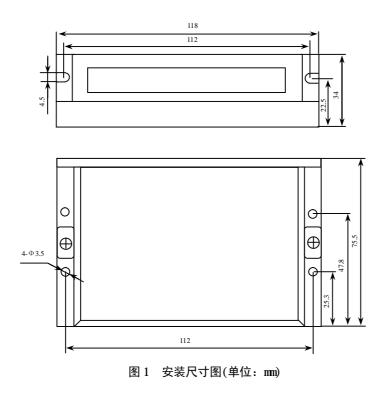
1.3 应用领域

适合各种多轴联动控制的中小型自动化设备和仪器: 如机械手, 包装机械等。

二、电气、机械和环境指标

2.1 电气指标

参数	DM556-CAN						
少 数	最小值	典型值	最大值	单位			
输出电流 (峰值)	0.1	/	5.6	A			
电源电压(直流)	20	36	50	V			
IO 输入电流	6	10	16	mA			
IO 输入电压	5	/	24	V			
过压电压	-	90	-	V			
绝缘	50	/	/	$M\Omega$			


2.2 使用环境及参数

冷却方式		自然冷却或强制风冷				
	场合	不能放在其它发热的设备旁,要避免粉尘、油雾、腐蚀性气体,				
	物口	湿度太大及强振动场所,禁止有可燃气体和导电灰尘;				
使用环境	温度	0~50°C				
	湿度	40~90%RH				
	振动	10~55Hz/0.15mm				
保存温度		-20°C ~65°C				
重量		约 280 克				

2.3 机械安装图

※推荐采用侧面安装,散热效果更佳,设计安装尺寸时,注意考虑端子大小及布线!

2.4 散热方式

- 1) 驱动器的可靠工作环境温度通常在50℃以内, 电机工作温度为120℃以内;
- 2) 建议使用时选择自动半流方式,马达停止时电流自动减一半,以减少电机和驱动器的发热;
- 3) 安装驱动器时请采用竖着侧面安装,使散热齿形成较强的空气对流;必要时机内靠近驱动器处安装风扇,强制散热,保证驱动器在可靠工作温度范围内工作。

三、驱动器接口描述和拨码说明

3.1 接口描述

3.1.1 输入输出信号接口

DM556-CAN 有 3 个输入和 1 个输出信号接口, 具体功能说明如下表:

信号	功能说明
IN1+	IO1 输入信号正(5~24V 兼容)
IN1-	IO1 输入信号负(5~24V 兼容)
IN2+	IO2 输入信号正(5~24V 兼容)
IN2-	IO2 输入信号负(5~24V 兼容)
IN3+	IO3 输入信号正(5~24V 兼容)
IN3-	IO3 输入信号负(5~24V 兼容)
ALM+	报警信号输出负端,集电极开路 OC 隔离输出,输出最大电流 100mA,最大上拉电压 24Vdc
ALM-	报警信号输出正端,集电极开路 OC 隔离输出,输出最大电流 100mA,最大上拉电压 24Vdc

注:输入功能可通过软件进行配置, ALM 为报警输出。

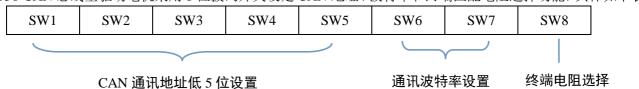
3.1.2 强电接口

DM556-CAN 的电机接口和电源接口对应符号的功能说明如下表:

接口名称	功能说明
GND	电源输入接口: +Vdc 接电源正极, GND 接电源负极直流电源
+Vdc	输入电压范围 20~50Vdc,推荐工作电压 36Vdc
A+	两相电机 A+相
A-	两相电机 A-相
B+	两相电机 B+相
B-	两相电机 B-相

注意:接线过程中切勿将电源接到电机接线端口,否则将烧坏驱动器!

3.1.3 CAN 通讯接口


DM556-CAN 的 CAN 端口采用双联体带屏蔽的 RJ45 端子(采用标准的 RJ45 规范)。

RJ45 端子引脚号顺序定义	引脚号	信号	功能说明
	1	CAN_H	CAN 信号高
1 8	2	CAN_L	CAN 信号低
	3	CAN_GND	CAN 信号地
LUUUUUUU L RJ45 插座	4~5	NC	
	6	NC	
	7		预留 GND
	8	NC	

备注: CAN 端口无需区分上下联;在工况不算复杂的场合,只需要用到 CAN_H 与 CAN_L 即可(不可接反),否则应当使用带屏蔽的电缆并可靠接地。

3.2 拨码开关说明

DM556-CAN 总线型驱动电机采用 8 位拨码开关设定 CAN 地址、波特率和终端匹配电阻选择功能,具体如下表:

3.2.1 CAN 地址设置说明

DM556-CAN 的 CAN 地址总共有 7 位,其中低 5 位 CAN 地址由拨码开关 SW1~SW5 设定,高 2 位 CAN 地址通过上位机设置,低 5 位 CAN 地址具体设置如下:

CAN 地址 ID(低五位)	SW1	SW2	SW3	SW4	SW5
0	on	on	on	on	on
1	off	on	on	on	on
2	on	off	on	on	on
3	off	off	on	on	on
4	on	on	off	on	on
5	off	on	off	on	on
6	on	off	off	on	on
7	off	off	off	on	on
8	on	on	on	off	on
9	off	on	on	off	on
10	on	off	on	off	on
11	off	off	on	off	on
12	on	on	off	off	on
13	off	on	off	off	on
14	on	off	off	off	on
15	off	off	off	off	on
16	on	on	on	on	off
17	off	on	on	on	off
18	on	off	on	on	off
19	off	off	on	on	off
20	on	on	off	on	off
21	off	on	off	on	off
22	on	off	off	on	off
23	off	off	off	on	off
24	on	on	on	off	off
25	off	on	on	off	off
26	on	off	on	off	off
27	off	off	on	off	off
28	on	on	off	off	off
29	off	on	off	off	off
30	on	off	off	off	off
31	off	off	off	off	off

备注: 1、SW1~SW5 全为 on 为广播地址,实际应用中不可用;

2、CAN 通讯地址修改后,需要重新上电才生效。

3.2.2 CAN 通讯波特率设置说明

CAN 通讯波特率由拨码开光 SW6 和 SW7 设定,如下表所示:

波特率(Baud Rate)	SW6	SW7
Default(100KHz,可使用上位机选定预设值)	on	on
250KHz	off	on
500KHz	on	off
1MHz(出厂设定值)	off	off

备注: 1、SW5 和 SW6 均为 on 时, 默认波特率为 100KHZ,此时也可以通过调试软件选择其他内置波特率(详细参照参数设置):

2、波特率修改后,重新上电才生效

3.2.3 CAN 终端电阻选择

在网络最末端的驱动器要求将 SW8 状态置为 "on", 其余驱动器 SW8 状态置为 "off"

四、DM556-CAN 应用说明

4.1 配线说明

- (1) 电源、电机接线端子
- 线径: +Vdc、GND、A+、A-、B+、B- 端子线径≥0.3mm² (AWG15-22)。
- 建议电源经过噪声滤波器供电,提供抗干扰性。
- (2) 输入输出信号
- 线径: IN1+、IN1-、IN2+、IN2-、IN3+、IN3-、 端子线径≥0.12mm² (AWG24-26)。 建议采用双绞屏蔽电缆,电缆长度尽可能短,建议不超过 3 米。
- 布线: 尽量远离动力线布线, 防止干扰串入。
- 请给相关线路中的感性原件(如线圈)安装浪涌吸收元件;直流线圈反向并联续流二极管,交流线圈并联阻容吸收回路。

(3) CAN 通讯端子

CAN 总线线缆长度、导线横截面积、终端电阻、通讯速率之间存在耦合关系,推荐的组合关系如下:

总线长度	总线电缆		终端电阻	通讯速率
(米)	单位长度电阻(毫欧/米)	横截面积 (平方毫米)	(欧姆)	超爪坯平
0~40	70	0.25~0.34	120	1 Mbit/s
40~300	<60	0.34~0.6	150~300	<500 Kbit/s
300~600	<40	0.7~0.75	150~300	<100 Kbit/s
600~1000	<26	0.75~0.8	150~300	<50 Kbit/s

推荐使用屏蔽双绞线作为总线电缆。

(4) 终端电阻

DM556-CAN 驱动器的内置终端电阻通过拨码 SW8 选择,在总线末端的一个驱动器需要将 SW8 设置为 on。

注意: 电源线+Vdc、GND 切不可接反。否则将烧坏驱动器。

电缆及导线需固定好,避免靠近驱动器散热器和电机,以免受热降低绝缘性能。

4.2 驱动器接线

DM556-CAN 采用 CANopen 协议,典型接线拓扑结构示意图如下所示:

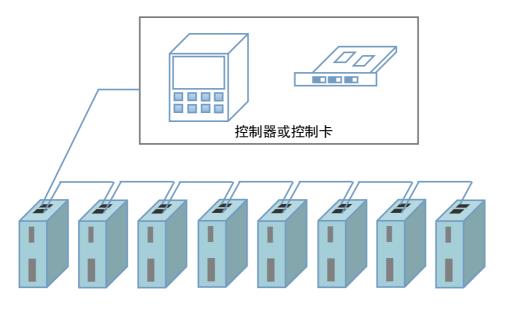
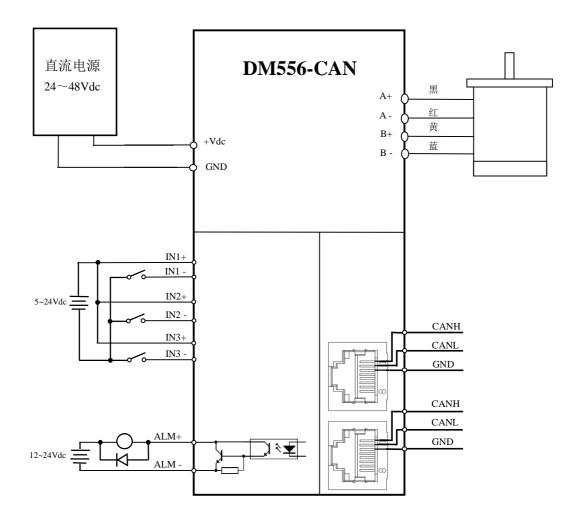



图 7 DM556-CAN 接线示意图(最后一个驱动器 SW8 设置为 on)

驱动器节点接线图:

【注】图中所示是驱动器位于网络中间的节点为例,在网络末端的节点,只需要连接两个通讯接口中的任意一个即可,但注意末端节点的拨码开关 SW8 设置为 on (其余节点 SW8 设置为 off)。

4.3 电机选配

4.3.1 确定负载转矩, 传动比工作转速范围

T ңл=C ($J\epsilon+T$ $_{ extstyle e$

J: 负载的转动惯量 ε: 负载的最大角加速度 C: 安全系数,推荐值 1.2-1.4

T 🚓: 最大负载转矩,包括有效负载、摩擦力、传动效率等阻力转矩

4.3.2 电机输出转矩由哪些因素决定

对于给定的步进电机和线圈接法,输出扭矩有以下特点:

- ●电机实际电流越大,输出转矩越大,但电机铜损(P=I²R)越多,电机发热偏多;
- ●驱动器供电电压越高,电机高速扭矩越大;
- •由步进电机的矩频特性图可知, 高速比中低速扭矩小。

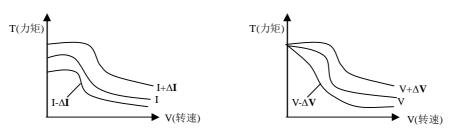
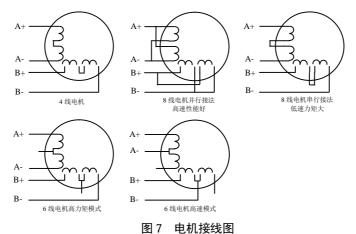



图 6 矩频特性图

4.3.3 电机接线

对于 6、8 线步进电机,不同线圈的接法电机性能有相当大的差别,如下图所述:

国· 石/mxx

注意:

- 1)不同的电机对应的颜色不一样,使用时以电机资料说明为准,如 57型与86型电机线颜色是有差别的。
- 2) 相是相对的,但不同相的绕组不能接在驱动器同一相的端子上(A+、A-为一相,B+、B-为另一相),57HS22 电机引线定义、串、并联接法如下图所示。
 - 3) DM556-CAN 驱动器只能驱动两相混合式步进电机,不能驱动三相和五相步进电机。
- 4) 判断步进电机串联或并联接法正确与否的方法: 在不接入驱动器的条件下用手直接转动电机的轴,如果能轻松均匀地转动则说明接线正确,如果遇到阻力较大和不均匀并伴有一定的声音说明接线错误。

4.4 供电电源选择

电源电压在规定范围之间都可以正常工作,推荐采用非稳压型直流电源供电,也可以采用变压器降压+桥式整流+电容滤波。但注意应使整流后电压纹波峰值不超过其规定的最大电压。建议用户使用低于最大电压的直流电压供电,避免电网波动超过驱动器电压工作范围。

如果使用稳压型开关电源供电,应注意开关电源的输出电流范围需设成最大。 请注意:

- 1) 接线时要注意电源正负极切勿反接;
- 2) 绕组接线端切勿直接接入电源:
- 3) 最好用非稳压型电源;
- 4) 采用非稳压电源时,电源电流输出能力应大于驱动器设定电流的60%即可;
- 5) 采用稳压开关电源时,电源的输出电流应大于或等于驱动器的工作电流;
- 6) 为降低成本,两三个驱动器可共用一个电源,但应保证电源功率足够大。

4.4.1 供电电压的设定

一般来说,供电电压越高,电机高速时力矩越大。越能避免高速时掉步。但另一方面,电压太高会导致过压保护,电机发热较多,甚至可能损坏驱动器。在高电压下工作时,电机低速运动的振动会大一些。

4.4.2 输出电流的设定值

对于同一电机,电流设定值越大时,电机输出力矩越大,但电流大时电机和驱动器的发热也比较严重。具体发热量的大小不仅与电流设定值有关,也与运动类型及停留时间有关。以下的设定方式采用步进电机额定电流值作为参考,但实际应用中的最佳值应在此基础上调整。原则上如温度很低(<40℃)则可视需要适当加大电流设定值以增加电机输出功率(力矩和高速响应)。

- ●四线电机:输出电流设成等于或略小于电机额定电流值;
- ●六线电机高力矩模式:输出电流设成电机单极性接法额定电流的50%;
- ●六线电机高速模式:输出电流设成电机单极性接法额定电流的100%;
- ●八线电机串联接法:输出电流可设成电机单极性接法额定电流的70%;
- ●八线电机并联接法:输出电流可设成电机单极性接法额定电流的140%。

△注意: 电流设定后请运转电机 15-30 分钟,如电机温升太高(>70℃),则应降低电流设定值。所以,一般情况是把电流设成电机长期工作时出现温热但不过热时的数值。

4.5 PC 软件参数设置

DM556-CAN 使用 CANopen 总线适配器和 LeadshineCANopen 上位机软件,或者带 CANopen 主站功能的 PLC ,调用相应的 EDS 文件,使用 SDO 通讯方式修改驱动器参数。(上位机的下载请登录雷赛官网 http://leisai.com/) 如何设置和调试参数,可参照《DM556-CAN 调试软件应用说明》

4.5.1 常用对象列表

1) 厂家参数

CANopen 地址	参数名称	属性	出厂默认 参数	参数可设 置范围	说明
2000+00	峰值电流	R/W/S	3200	100~最大 电流	电流精度 100mA,最大电流由驱动器软件 定义(mA)。
2001+00	每转脉冲	R/W/S			
2002+00	待机时间	R/W/S	500	100~10000	单位: ms
2008+00	报警 ALM 阻态设置	R/W/S	0	0/1	0: 有效时光耦导通 1: 有效时光耦截止
2013+00	电流环自整使能	R/W/S	1	0/1	0: 不使能 1: 使能
2015+00	电流环 Kp	R/W/S	1000	200~ 32767	自整定使能时,该项只读;不使能时用户 可改写
2016+00	电流环 Ki	R/W/S	200	0~32767	自整定使能时,该项只读;不使能时用户 可改写
2017+00	电流环 Kc	R/W/S	100	80~300	自动获取,不允许客户修改
2020+00	电机电阻	R/W/S	1000	1~20000	单位: mOhms
2021+00	电机电感	R/W/S	1	1~6000	单位: uH
2024+00					
2025+00	待机电流百分比	R/W/S	50	0~100	单位:%,待机使用
2026+00	开环电流百分比	R/W/S	50	0~100	单位: %, 开环使用

		DNIJJ	0-CAIN [7] [HZ	步进驱动器说明	71 11
2039+00	外部位置总数高 16 位	R			接收的位置指令累加值高 16bit
2040+00	外部位置总数低 16 位	R/W			接收的位置指令累加值低 16bit 写入 1 清除计数值
2043+00	速度参考	R			单位 r/s
2051+00	电机运行方向	R/W/S	0	0/1	0: 电机运行方向不变 1: 电机运行方向取反
2056+00	故障检测选择	R/W/S	0x03	0∼0xffff	软件检测故障选择位: 1: 使能。0: 屏蔽该故障检测 bit0: 过流(错误代码: 1。闪灯 1 次) bit1:过压(错误代码: 2。闪灯 2 次) bit2:EEPROM(错误代码: 8。闪灯 8 次) bit11:运放故障(错误代码: 9。闪灯 12 次)
2060+00	第一抗振幅值	R/W/S	0	0~100	第一个低速共振点抑制幅值
2061+00	第一抗振相位 A	R/W/S	0	0~255	第一个低速共振点抑制相位 A
2062+00	第一抗振相位 B	R/W/S	0	0~255	第一个低速共振点抑制相位 B
2063+00	第二抗振幅值	R/W/S	0	0~100	第二个低速共振点抑制幅值
2064+00	第二抗振相位 A	R/W/S	0	0~255	第二个低速共振点抑制相位 A
2065+00	第二抗振相位 B	R/W/S	0	0~255	第二个低速共振点抑制相位 B
2066+00	第三抗振幅值	R/W/S	0	0~100	第三个低速共振点抑制幅值
2067+00	第三抗振相位 A	R/W/S	0	0~255	第三个低速共振点抑制相位 A
2068+00	第三抗振相位 B	R/W/S	0	0~255	第三个低速共振点抑制相位 B
2069+00	第四抗振幅值	R/W/S	0	0~100	第四个低速共振点抑制幅值
2070+00	第四抗振相位 A	R/W/S	0	0~255	第四个低速共振点抑制相位 A
2071+00	第四抗振相位 B	R/W/S	0	0~255	第四个低速共振点抑制相位 B
2072+00	Z轴抗振相位	R/W/S	0	0~255	Z轴低速共振点抑制相位
2073+00	上电电机自动走位	R/W/S	0	0/1	0: 上电后电机正常待机 1: 上电后电机先正转 30 度再反转 15 度, 然后待机
2150+00	CANopen 从站地址 高 2 位	R/W/S	0	0~3	从站地址 设置后,重新上电才生效
2151+00	CANopen 波特率	R/W/S	0~7		0: 1 MBit/sec 1: 无效 2: 500 kBit/sec 3: 250 kBit/sec 4: 125 kBit/sec 5: 100 kBit/sec 6: 50 kBit/sec 7: 20 kBit/sec

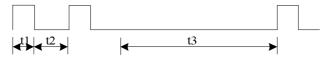
				2000年11日	~ ,
2152+01	输入数字 IOI 功能 选择	R/W/S	1	0~32768	1: 原点信号 2: 正限位 4: 负限位
2152+02	输入数字 IO2 功能 选择	R/W/S	2	0~32768	1: 原点信号 2: 正限位 4: 负限位
2152+03	输入数字 IO3 功能 选择	R/W/S	4	0~32768	1: 原点信号 2: 正限位 4: 负限位
2153+01	输入数字 IO1 滤波 时间	R/W/S	1000	50~60000	单位: us
2153+02	输入数字 IO2 滤波 时间	R/W/S	1000	50~60000	单位: us
2153+03	输入数字 IO3 滤波 时间	R/W/S	1000	50~60000	单位: us
2154+01	输入数字 IOI 电平 极性配置	R/W/S	0	0/1	0: 正逻辑 1: 反逻辑
2154+02	输入数字 IO2 电平 极性配置	R/W/S	0	0/1	0: 正逻辑 1: 反逻辑
2154+03	输入数字 IO3 电平 极性配置	R/W/S	0	0/1	0: 正逻辑 1: 反逻辑
2155+00	输入数字 IO 电平	R	0	0/1	最低位三位对应外部三个输出 IO 口 0: 低电平 1: 高电平
2090+00	保存参数	R/W			写1保存
2091+00	恢复出厂默认参数	R/W			写1恢复出厂值
2093+00	清除故障记录	R/W			写 1 清除故障记录

说明: R/W/S 表示该参数可读/可写/可保存

4.5.2 模式及控制

canOpen 地址	参数名称	属性	说明	
6040+00	控制字	R/W	控制驱动器的状态转换和运行	
6041+00	状态字	R	反馈驱动器当前状态	
6060+00	运行模式	RW	1: 位置模式 3: 速度模式 6: 回原点模式	
6061+00	模式查询	R	驱动器的工作模式	
607A+00	目标位置	R/W	工作模式1下的目标位置	
6064+00	实际位置	R	电机实际位置	
6081+00	最大速度	R/W	工作模式1(位置模式)时的最大速度	
60FF+00	目标速度	R/W	工作模式3(速度模式)时的目标速度	
606C+00	实际速度	R/W	电机的实际速度,单位: p/s	

211200 012 1410 20 20 20 10 10					
6083+00	加速度	R/W	工作模式 1 (位置模式) 和工作模式 3 (速度模式) 加速度, 单位: p/s ²		
6084+00	减速度	R/W	工作模式 1 (位置模式) 和工作模式 3 (速度模式) 减速度,单位: p/s²		
6085+00	急停减速 度	R/W	所有模式下的急停减速度,单位: p/s ²		
6098+00	回原点方 法	R/W	寻找原点方法		
6099+01	回原点速 度 1	R/W	回原点高速		
6099+02	回原点速 度 2	R/W	回原点低速		
609A+00	回原点加 速度	R/W	回零模式的加速度		
607C+00	原点偏置	R/W	原点偏置		


DM556-CAN 可以运行在 PP(位置模式)、PV(速度模式)和 Homing(回原点模式)三种运动模式。(具体协议 规范和标准的 CANopen 一致,具体操作见《CANopen 技术指导手册 通用版》)

4.5.3 状态指示

驱动器有红绿两个指示灯,其中绿灯为电源指示灯,当驱动器上电后绿灯常亮;红灯为故障指示灯。

故障指示灯说明如下:故障显示采用不定周期模式:具体故障决定的闪烁期+固定的灭灯时间。比如过流故障周期性的显示闪灯一次+灭灯 2s;过压故障周期性显示闪灯两次+灭灯 2s。

闪烁一次定义为亮灯 200ms,灭灯 300ms。(t1=200ms, t2=300ms, t3=2s) LED 闪烁波形时间图

闪烁次数	红色 LED 闪烁波形	故障说明
1		过流或短路故障
2	Π	过压故障(过压点 90Vdc)
8		EEPROM 故障
12		运放故障

注: EEPROM故障和运放故障默认出厂不开放,如客户需要可通过上位机设置。

五、常见问题

现象	可能问题	解决措施
	接线错误	检查电机线和通讯线是否正确连接
		检查细分,电流等参数,细分有可能设置太大,适当减小细
由 扣 <i>无 壮</i>	参数设置有误	分; 电流设置要与所配电机匹配; 检查波特率, 驱动器地址
电机不转		和上位机指令对应的地址是否对应。
	驱动器已保护	重新上电
	电机接线问题	检查电机接线
电机转向错误	电机线接有误	交换电机任意一相的两根线(例如 A+、A-交换接线位置)
电机积円相 庆	参数设置有误	检查驱动器参数设置
担敬比二/广宁	电机线接错	检查接线,是否出现电机线短路
报警指示灯亮	电压过高	检查电源电压是否达到过压电压阀值

Authorized Distributor of Leadshine Technology

DM556-CAN 两相步进驱动器说明书

2.11550 C.11 (1.11日) 及び 別 間 7.1 (1.11日)						
	电机或驱动器损 坏	更换电机或驱动器				
	信号受干扰	排除干扰,检查屏蔽地是否未接或未接好				
位置不准	细分错误	设对细分				
	电流偏小	加大电流				
	加速时间太短	加速时间加长				
电机加速时堵转	电机扭矩太小	选大扭矩电机				
	电压偏低或电流	适当提高电压或增大电流				
	设置太小	坦当灰同Ч匹以增入Ч伽				

雷赛产品保修条款

1 一年保修期

雷赛公司对其产品的原材料和工艺缺陷提供从发货日起一年的质保。在保修期内雷赛公司为有缺陷的产品提供免费维修服务。

2 不属保修之列

- •不恰当的接线,如电源正负极接反和带电拔插
- 未经许可擅自更改内部器件
- ●超出电气和环境要求使用
- ●环境散热太差

3 维修流程

如需维修产品,将按下述流程处理:

- 1) 发货前需致电雷赛公司客户服务人员获取返修许可号码;
- 2) 随货附寄书面说明,说明返修驱动器的故障现象;故障发生时的电压、电流和使用环境等情况;联系人的姓名、电话号码及邮寄地址等信息。
- 3)预付邮费寄至深圳市南山区登良路 25 号天安南油工业区二栋三楼 深圳市雷赛智能控制股份有限公司 邮编: 518052。(返回邮费由雷赛公司支付)

4 保修限制

- ●雷赛产品的保修范围限于产品的器件和工艺(即一致性)。
- ●雷赛公司不保证其产品能适合客户的具体用途,因为是否适合还与该用途的技术指标要求和使用条件及环境有关。

5 维修要求

返修时请用户如实填写《维修报告》(此表可在 <u>www.leisai.com</u> 上下载或 Email: <u>tech@leisai.com</u>) 注明故障现象,以便于维修分析。