

深圳市雷赛智能控制股份有限公司

地 址:深圳市南山区南山区学苑大道 1001 号南山智园 A3 栋 11 楼

邮 编: 518055

电话: 400-885-5521

传真: 0755-26402718

Email: info@leisai.com

网 址: www.leisai.com

上海分公司

地 址: 上海市淞江区九亭镇涞寅路

1881号10幢2楼

电话: 021-37829639

传真: 021-37829680

北京办事处

地 址: 北京市朝阳区北苑路 13 号院领地

officel 号楼 A 单元 606 号

电话: 010-52086876

传真: 010-52086875

H2-506

数字式混合伺服驱动器 使用说明书

版权所有 不得翻印

【使用前请仔细阅读本手册,以免损坏驱动器】

给原厂+的选择

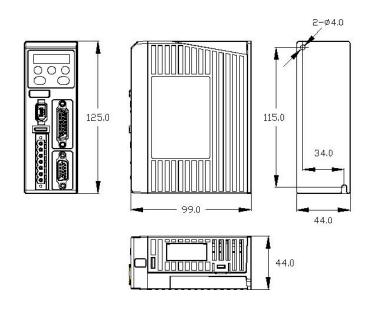
H2-506

数字式混合伺服驱动器

一、产品简介

- ◆ 采用全新 32 位电机控制专用 DSP 芯片;
- ◆ 采用先进的矢量型闭环控制技术;
- ◆ 具有示波器监测等功能;
- ◆ 输出电流大小自动调整(0---6A 范围内);
- ◆ 可驱动 42、57、60 系列混合伺服电机;
- ◆ 脉冲响应频率最高可达 200KHZ;
- ◆ 细分设定(200~51200内);
- ◆ 具有过流、过压和跟踪误差超差等保护;
- ◆ 六位数码管显示,可方便设置参数和监视电机运行状态等;

二、电气、机械和环境指标


1. 电气指标

参 数	H2-506			
少	最小值	典型值	最大值	单位
连续输出电流	0	-	6	A
输入电源电压	+24	+36	+50	Vdc
逻辑输入电流	10	12	15	mA
脉冲频率	0	-	200	kHz
绝缘电阻	100	-	-	ΜΩ
报警输出逻辑电流	-	-	100	mA

2. 使用环境及参数

冷却方式	自然冷却或外加散热器		
	使用场合	尽量避免粉尘、油雾及腐蚀性气体	
 使用环境	温度	0°C −40°C	
(大用外現	湿度 40-90%RH		
	震动 10~55Hz/0.15mm		
保存温度	-20°C −65°C		
重量	约 280 克		

3. 机械安装尺寸图

三、驱动器接口与接线介绍

1. 接口定义

1) 电机和电源输入端口

端子号	符号	名 称	说明
1	A+	A 相电机绕组+	
2	A-	A 相电机绕组一	
3	B+	B 相电机绕组+	
4	В—	B 相电机绕组一	
5	+VDC	输入直流电源	+24V~ +50V
6	GND	输入电源地	0V
7	PE	空端子	

2) 控制信号端口

7.16.1 ID 2.5.11	-		
端子号	符号	名 称	说明
1	ENA+	使能正输入	5~24V 兼容
2	ENA-	使能负输入	
3	PUL+	脉冲正输入	
4	PUL-	脉冲负输入	
5	DIR+	方向正输入	
6	DIR-	方向负输入	
7~8	NC		
9	SGND	信号地	
10	PEND+	到位信号正输出	
11	PEND-	到位信号负输出	
12	ALM+	报警信号正输出	
13	ALM-	报警信号负输出	
14~16	NC		

网址: www.leisai.com

电话: 0755-26433338 (20线)

H2-506 数字式混合伺服驱动器使用说明书

17	Z-OUT	Z信号单端输出	上拉电压 5~24V, 限流电阻 2K~10K,0.5W 以上
18	GND	OCZ 信号地	
19	+5V	5V 输出,50mA	
20	EA+	编码器 A 相差分输出正端	
21	EA-	编码器A相差分输出负端	
22	EB+	编码器B相差分输出正端	
23	EB-	编码器B相差分输出负端	
24	Z+	编码器Z相差分输出正端	
25	Z-	编码器Z相差分输出负端	
26	SGND	信号地	

3) 状态指示

H2-506 有一个 LED 指示电源和六位数码管显示状态,数码管面板操作如图 2 所示。通过按键"M"选择显示模式,通过上下按键选择监视电机运行的状态,如下表是各个监视代码代表的含义。

显示参数定义如下表:

图 2 按键面板图

LED 显示	含义	备注
	数据低位	
8 8	数据高位	
888888	位置误差	给定脉冲与反馈脉冲的差值
8181818181	电机速度: r/min	
888888	给定速度: r/min	

电话: 0755-26433338 (20 线) 网址: www.leisai.com 4

888888	反馈脉冲: p	
8181818181	给定脉冲: p	
888888	电流给定: mA	
888888	驱动器故障代码	001——过流保护 002——过压保护 020——超差保护 00d——断线保护
888888	整流后的母线电压	电压=显示数据/10
	驱动器版本号	

当驱动器出现故障时,驱动器将停机,并提示相应故障代码。用户需断电,并重新上电时,故障才可以清除。当驱动器出现故障时,驱动器将按队列形式,将最新故障保存在驱动器的 EEPROM 内,驱动器最多保存 10 个最新历史故障。

故障处理方法

现象	问题	解决措施	
		1.重启驱动器;	
		2.重启驱动器报警依然存在,检查电机动力线是否短	
001——过流保护	过流	路。	
		3.拔出电机动力线,重启驱动,报警依然存在,驱动	
		损坏,请返修;	
		1.重启驱动器;	
002——过压保护	过压	2.重启驱动器报警依然存在,检查电源电压是否过	
		高;	

		1.检查 PA08 "编码器分辨率"是否设置有误;	
	跟踪误差超差	2.检查电机与驱动器接线,是否相序错误(电机	
020——超差保护		A+\A-、B+\B-必须和驱动 A+\A-、B+\B-严格对应);	
020 起至(水)	以 以	检查编码器线是否断线;	
		3.加速时间适当加长;	
		4.检查电机是否堵转。	
		1.检查电机编码器线和编码器延长线是否断线或接	
		触不良;	
and blockly /III La.	/के रच प्राप्त Me (A)	2.线缆确认良好,依然报警,确认电机编码器是否损	
00d——断线保护	编码器断线	坏;	
		3.如果线缆为客户自己焊接,检查接线定义是否正	
		确;	
1.18.27.66.3.7.711.99	电机方向设定错		
电机旋转方向错误	误	检查 PA19 设置是否正确	
		1.使用驱动试运行功能进行测试。将 PA28 设置为 1,	
		观察电机是否运行,如果电机运行,检查脉冲信号	
		接线连接是否正确。如果电机不运行,检查动力线	
l la lil		和编码器连接线是否正常;	
电机不转	上上 无脉冲信号	(特别注意:使用试运行功能前,请确定人员安全,	
		确定机械没有撞击风险,否则禁止使用该功能)	
		 2.使用外部使能时(通过 ENA+和 ENA-控制),使	
		能电平 "PA15"设置是否正确;	
	脉冲模式选择错		
电机只朝一个方向旋	误	1.检查 PA17 脉冲模式是否设置正确。	
转	无方向信号	2.检查方向信号线连接是否正确。	
	<u> </u>		

电话: 0755-26433338 (20 线) 网址: www.leisai.com 电话: 0755-26433338 (20 线) 网址: www.leisai.com 6

2. 控制信号接口电路图

控制信号输入和输出接口电路图,如图3所示。

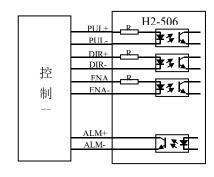
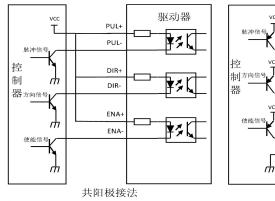
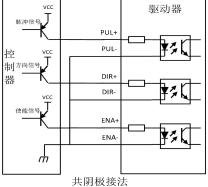




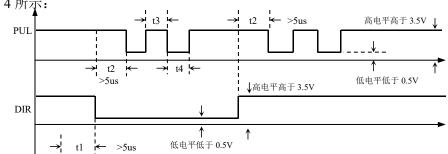
图 3(a) 差分方式控制信号接口接线图

网址: www.leisai.com

图 3(b) 单端方式控制信号接口接线图

辻注意: VCC 值为 5V 时, 无需串接电阻;

VCC 值为 12V 时, R 为 1K, 大于等于 1/4W 电阻: VCC 值为 24V 时, R 为 2K, 大于等于 1/4W 电阻:


电话: 0755-26433338 (20线)

电话: 0755-26433338 (20线)

网址: www.leisai.com

为了避免一些误动作和偏差, PUL、DIR 和 ENA 应满足一定要求, 如下 图 4 所示:

3. 控制信号时序图

H2-506 数字式混合伺服驱动器使用说明书

图 4 控制信号时序图

注释:

ENA

- (1) t1: ENA (使能信号) 应提前 DIR 至少 5µs, 确定为高。一般情况下 建议 ENA+和 ENA-悬空即可。
- (2) t2: DIR 至少提前 PUL 下降沿 5 μs 确定其状态高或低。
- (3) t3: 脉冲宽度至少不小于 2.5 us。
- (4) t4: 低电平宽度不小于 2.5 us。

4. 控制信号模式设置

脉冲触发沿和单双脉冲选择:通过控制面板设置脉冲上升沿或下降沿触发 有效: 还可以设置单脉冲模式或双脉冲模式。

5. 编码器接线

编码器接线由本司提供的 CABLEG-BM 系列 15 针延长线和电机编码器线, 该延长线直接连接电机和驱动器,无需客户接线。下表是 H2-506 编码器接口 定义。

雷赛智能官方代理:雷创智能科技

DB 头引脚	信号	描述	
1	EA+	编码器 A 通道正输入	
2	EB+	编码器 B 通道正输入	
3	GND	编码器 GND 输入	
7	EZ+	编码器Z通道正输入	
8	EZ-	编码器Z通道负输入	
11	EA-	编码器 A 通道负输入	
12	EB-	编码器 B 通道负输入	
13	VCC	编码器+5V 电源输入	

四、按键参数设置

H2-506 驱动器的参数设置方法:直接在驱动器的按键面板设置参数,驱动器内部存有一套对应电机最佳的默认出厂配置参数,用户只须按照具体使用情况调整驱动器内部细分数即可。具体可调整的参数及功能见下表:

H2-506 按键操作方法如下。

H2-506 数字式混合伺服驱动器使用说明书

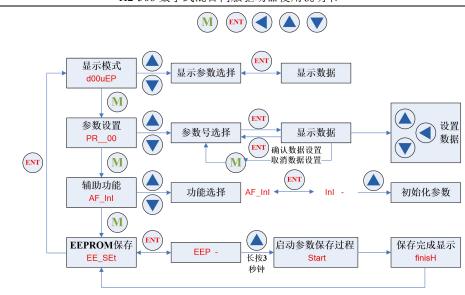


图 5 按键操作流程图

五、驱动器参数设置

参数模式数码管显示为:

200 200 其中的"00"表示参数序号,具体含义如下表

参数序	参数序 参数名称 参数值 参数范围 备注				
号	多数石柳	罗双匝	多数范围	田仁	
00	电流环 K p	以显示值	0~65535	不可修改	
01	电流环 Ki	为基准	0~65535	不可修改	
02	电流环增益的调整比 例	100	0~1024	单位: %	
03	位置环 Kp	100	0~10000	位置环 PID 的 P 参数	
04	速度环 Ki	60	0~10000	速度环 PID 的 I 参数	
05	速度环 Kp	100	0~1000	速度环 PID 的 P 参数	
06	转矩前馈	0	0~1000	加速度前馈调节参数	
07	每转脉冲数	1600	200~65535		

电话: 0755-26433338(20 线) 网址: www.leisai.com 电话: 0755-26433338(20 线) 网址: www.leisai.com 10

H2-506 数字式混合伺服驱动器使用说明书

08	编码器分辨率	4000	200~20000	
09	位置超差报警阀值	4000	1~65535	
10	上电锁轴电流百分比	15	0~100	最大电流的百分比
11	闭环电流百分比	80	1~100	不可修改
12	上电软启动延时	2	1~30	实际值=显示值*100ms
13	脉冲滤波使能	1	0/1	不可修改
14	滤波时间	60	0~600	实际值=显示值*0.05ms
15	使能电平	1	0/1	0——使能时(电机可以 响应脉冲),光耦导通, EN端口需要输入5V信号 1——使能时(电机可以 响应脉冲),光耦截止, EN端口可以不输入信号
16	故障输出阻态	0	0/1	0——高阻 1——低阻
17	单双脉冲选择	0	0/1	0——脉冲+方向 1——双脉冲模式
18	脉冲有效沿	0	0/1	0——上升沿 1——下降沿
19	电机旋转方向	1	0/1	0 与 1 表示两个不同的运 行方向
20	带宽选择	0	0/1	0: 200KHz 1: 300KHz
21	加速度	200	1~2000	这些参数是通过按键面 板控制电机旋转时用到
22	速度	60	1~3000	
23	行程	100	1~65535	
24	运行次数	1	1~65535	
25	启动方向	1	0/1	
26	运行间隔时间	100	1~65535	
27	是否往复运行	1	0/1	
28	启动/停止测试	0	0/1	

H2-506 数字式混合伺服驱动器使用说明书				
29	开闭环选择	1	0/1/2	0开环1矢量2超前角注意:改变此参数时,驱动器会断开使能。保存重启有效。注意使用开环模式和超前角模式时,首先确定电机电流参数是否正确pa59,如28电机,PA59设定为13。否则会烧毁电机。
30	自整定设置	1	0/1	
31	共振补偿	0	0~1000	无效
32	非使能是否锁轴	0	0/1	0 不锁轴 1 锁轴
33	使能清除报警	0	0/1	0 不开启 1 开启
34	下桥臂绕组是否短接	0	0/1	0 不短接 1 短接
35	PEND 信号功能选择	0	0/1	0 到位 1 抱闸输出
36	PEND 输出阻态	0	0/1	0 高阻 1 低阻
37	重力补偿	0	0/1	0 不补偿 1 补偿
38	速度环积分限幅	20	0~80	实际值=显示值*100mA
39	占用参数1	0	0~127	
40	占用参数 2	0	0~64	
41	断电电压百分比	0	0~100	应用于抱闸电机 单位%
42	电机类型选择	3	0~100	=1 42HSM06-E1 =2 42HSM08-E1 =3 57HSM24-E1 =4 57HSM14-E1 =5 60HSM30-E1
43	到位时误差设定值	4	0~100	实际值=显示值*1个脉冲
44	到位位置误差消抖延 时	3	0~100	实际值=显示值*1ms
45	速度环 VpH	100	0~10000	改善高速速度环增益
46	占用参数3	12	0~64	
47	闭环保持电流百分比	45	0~100	单位: %
48	刹车电阻启动电压值	72	0~500	
49	刹车电阻是否启动	1	0/1	0 不启动 1 启动
50	运动模式选择	1	0~9	0~3 轨迹模式 4~5 点位模式
51	位置环滤波频率	2	0~31	

电话: 0755-26433338 (20 线) 网址: www.leisai.com 电话: 0755-26433338 (20 线) 网址: www.leisai.com 12

_				
52	速度环滤波频率	6	0~31	
53	高速速度环滤波频率	10	0~31	
54	速度环采样频率	4	0~31	
55	运动中电流环增益的 调整比例	100	0~200	
56	电机上电自运行	0	0/1	0 关闭 1 开启
57	故障检测选择	131	0~65535	
59	电机峰值电流	80	0~100	单位: 0.1A
60	开环保持电流百分比	45	0~100	单位: %
61	电流环 Kc	0	0~32767	
62	电机反电动势系数	0	0~32767	单位: 100/rps
63	弱磁系数 0	0	0~255	
64	弱磁系数 1	0	0~255	
65	位置环 KpH	100	0~1000	
66	刚度	0	0~31	
67	惯量比	100	100~10000	单位: %
68	速度前馈	28	0~32	
69	位置第3增益有效时间	20	0~1000	
70	位置第3增益有效倍率	16	0~1000	
71	电机极对数	50	2~100	
72	占用参数 4	0	0~255	
73	占用参数 5	100	0~255	
74	占用参数 6	20	0~255	
75	占用参数 7	2	0~255	
76	占用参数 8	0	0~255	
77	占用参数 9	0	0~255	
78	占用参数 10	0	0~255	

上注意:驱动器出厂默认的电流环、位置环和速度环参数为配套电机的最佳参数,客户一般无需修改,只需要根据系统控制的需要选择好电机细分数即可。有需求可致电雷赛公司,按键面板参数调制如下:

1.选择电机:外部脉冲停止发送。按键选择 PA42 号参数,选择所适配的电机,默认参数适配 57HSM24-E1。若客户选择的电机机座尺寸或者力矩小于

网址: www.leisai.com

电话: 0755-26433338 (20线)

H2-506 数字式混合伺服驱动器使用说明书

默认电机,则步骤 2 中的参数都应相应的减小,反之则需要加大。 2.更改参数:

PA03 位置环 Kp: 位置环比例增益系数,数值应与 PA05 速度环 Kp 一致。 PA04 速度环 KI: 电流环比例增益系数,数值约为 PA05 速度环 Kp 的 1/2~1/4。 PA05 速度环 Kp: 速度环比例增益系数,相当于刚性,在客户可接受的噪声振动范围内该参数越大,机械效果越好。一般不超过 180。

六. 典型应用接线图

由 H2-506 驱动器等构成的直流伺服系统的典型接线图如图 6 所示。电源为推荐大小范围,电压越高,高速性能越好。

电话: 0755-26433338 (20 线) 网址: www.leisai.com 14

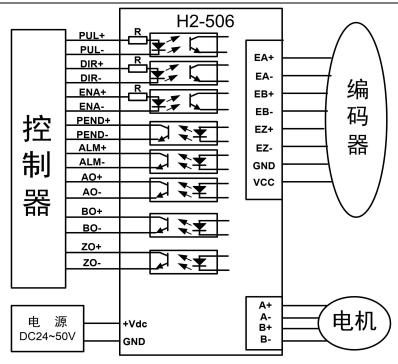
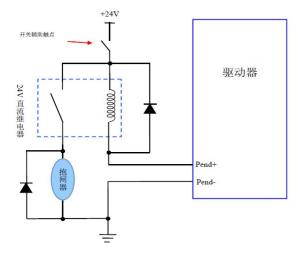


图6 典型接线图

1、混合伺服电机线颜色和定义

引脚	60/57 电机颜色	42 电机颜色	信号	描述
1	黑色	黑色	A+	A 相电机绕组+
2	红色	红色	A-	A 相电机绕组一
3	黄色	黄色	B+	B 相电机绕组+
4	绿色	蓝色	B-	B 相电机绕组一


H2-506 数字式混合伺服驱动器使用说明书

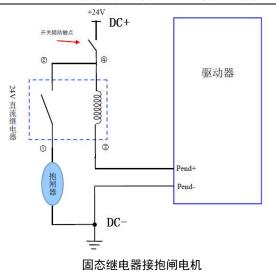
2、带抱闸电机接线方法

客户使用抱闸功能时须将 35 号参数(Pend 输出口功能选择)设置为 1, 即抱闸输出, 抱闸功能才会启用。

继电器参考接线如下图,由于抱闸线圈和继电器线圈均是感性负载,建议加上二极管,二极管型号可选择普通整流二极管(如: IN4007)另外,二极管极性切不可接反。

建议客户使用固态继电器,就无需加二极管,固态继电器优点:响应速度快,无需加二极管,通断不会发出声音;推荐使用"凯泽"的 KS1-10DD 型号固态继电器。

普通继电器接抱闸电机


15 电话: 0755-26433338 (20 线) 网址: www.leisai.com 电话: 0755-26433338 (20 线) 网址: www.leisai.com 16

Authorized Distributor of Leadshine Technology

H2-506 数字式混合伺服驱动器使用说明书

H2-506 数字式混合伺服驱动器使用说明书

雷赛产品保修条款

1 一年保修期

雷赛公司对其产品的原材料和工艺缺陷提供从发货日起一年的质保。在保修期内雷赛公司为有缺陷的产品提供免费维修服务。

2 不属保修之列

- 不恰当的接线,如电源正负极接反和带电拔插
- 未经许可擅自更改内部器件
- 超出电气和环境要求使用
- 环境散热太差

3 维修流程

如需维修产品,将按下述流程处理:

- (1) 发货前需致电雷赛公司客户服务人员获取返修许可号码;
- (2) 随货附寄书面说明,说明返修驱动器的故障现象;故障发生时的电压、电流和使用环境等情况;联系人的姓名、电话号码及邮寄地址等信息。
- (3)预付邮费寄至深圳市南山区松白路百旺信工业区第五区 22 栋三楼雷赛智能控制股份有限公司 邮编: 518052。

4 保修限制

- 雷赛产品的保修范围限于产品的器件和工艺(即一致性)。
- 雷赛公司不保证其产品能适合客户的具体用途,因为是否适合还与该用途的技术指标要求和使用条件及环境有关。本公司不建议将此产品用于临床医疗用途。

5 维修要求

返修时请用户如实填写《维修报告》(此表可在 www.leisai.com 上下载或 Email: tech@leisai.com)以便于维修分析。邮寄地址:深圳市南山区松白路百旺信工业区第五区 22 栋三楼雷赛智能控制股份有限公司 邮编: 518052。